期刊文献+

人工鱼群算法与遗传算法融合求解聚类问题研究 被引量:4

A Combination of Artificial Fish Swarm Algorithm and Genetic Algorithm For Solving Clustering Analysis Problem
下载PDF
导出
摘要 人工鱼群算法(AFSA)是一种新提出的新型仿生优化算法。遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。聚类在数据挖掘、统计学和机器学习等很多领域都有广泛应用。聚类问题实质是一个全局优化问题。将遗传算法中的选择和变异融合到人工鱼群算法,提出一种人工鱼群算法与遗传算法的融合算法,并应用于求解聚类问题,结果该算法保持了AFSA算法简单、易实现的特点,仿真试验取得了较好的效果。 Artificial fish swarm algorithm(AFSA) is a nove1 bio-inspired optimizing method.The Genetic Algorithm is a random search and optimized solution that mimics the process of natural evolution and genetics.Clustering has been applied to many areas,including data mining,statistics,and machine learning and can be regarded as a global optimization problem.This paper presents an algorithms combination of the artificial fish swarm algorithm and the genetic algorithm by means of combining the selection and mutation f...
出处 《安徽农业科学》 CAS 北大核心 2010年第36期21068-21071,共4页 Journal of Anhui Agricultural Sciences
基金 安徽省教育厅自然科学基金项目(KJ2008B021)
关键词 人工鱼群算法 遗传算法 聚类 优化 Artificial fish swarm algorithm Genetic algorithm Clustering Optimization
  • 相关文献

参考文献9

二级参考文献26

共引文献1207

同被引文献44

  • 1何登旭,曲良东.一种新的混合聚类分析算法[J].计算机应用研究,2009,26(3):879-880. 被引量:7
  • 2李良敏.改进二进制编码变异策略研究[J].系统仿真学报,2005,17(5):1076-1078. 被引量:2
  • 3刘清,廖忠,沈祖诒,王柏林.多点正交交叉的遗传算法[J].计算机工程,2005,31(24):151-152. 被引量:13
  • 4刘成学,杨林德,曹文贵.岩石统计损伤软化本构模型及其参数反演[J].地下空间与工程学报,2007,3(3):453-457. 被引量:25
  • 5Gong M G, Jiao L C, Du H F, et al. Muhiobjective im- mune algorithm with nondominated neighbor-based se- lection [ J ]. Evolutionary Computation,2008,16 (2) : 225 - 255.
  • 6Meng Zhang, Weiguo Zhang, Yong Sun. Chaotic Co - evolutionary Algorithm Based on Differential Evolution and Particle Swarm Optimization [ J ]. International Con- ference on Automation and Logistics ,2009 (8) :885.
  • 7Guangyuan Liu, Jingiun Zhang, Ruizhen Gao, et al. A Improved Parallel Genetic Algorithm Based on Fixed Point Theory for the Optimal Design of Multi-body Mod- el Vehicle Suspensions [ J ]. IEEE International Confer- ence on Computer Science and Information Technology, 2009 ( 8 ) :430.
  • 8Kim Soon, Patricia G, Jason A, et al. Evaluating the Ef- ficiency of Self Adaptive GA and Evaluating the Effi- ciency of Self Adaptive GA and Auctions Environment [ J ]. Electronic Commerce and Security, 2009 (3) :644.
  • 9Shengxiang Yang, Renato T. Hyper-Selection in Dynam- ic Environments [ J ]. Evolutionary Computation, 2008 (9).
  • 10Meijuan Gao,Jin Xu,Jingwen Tian, et al. Path Planning for Mobile Robot Based on Chaos Genetic Algorithm [J]. International Conference on Natural Computation, 2008,10:409 - 413.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部