期刊文献+

基于自组织映射的期刊主题可视化组织 被引量:3

Visual Organization of Journal Subjects with Self-Organizing Map
下载PDF
导出
摘要 本文利用自组织映射(SOM)人工神经网络方法对学术期刊按其主题进行可视化组织.在修改常见的SOM显示方式统一距离矩阵(U-matrix)的基础上提出增强型U-matrix及新的SOM显示方式'属性方差矩阵'(AV-matrix),构造了'关键属性投影'方法,以53种有代表性的图书情报类英文期刊为例,将期刊按其主题分为19个类,识别各类期刊之间的关键差异主题,并分析各类期刊在关键差异主题上的特点. This paper aimed to visually organize the academic journals according to their subjects with the Self- Organizing Map (SOM) technique. An Enhanced Unified Distance Matrix (U-matrix) was presented with some modifications on U-matrix, a conventional SOM display. A novel SOM display named Attribute Variance Matrix (AV-matrix) was also proposed and a method of Key Attribute Projection was constructed. Fifty-three typical English journals in the field of Library and Information Science (LIS) were selected as experimental samples and categorized into nineteen clusters. The subjects which contributed the most to the differences among journals were identified and the characteristics of journal clusters in terms of subjects were analyzed.
作者 安璐 李纲
出处 《情报学报》 CSSCI 北大核心 2011年第2期183-191,共9页 Journal of the China Society for Scientific and Technical Information
基金 中国博士后科学基金面上资助项目,国家自然科学基金青年科学基金,武汉大学自主科研项目(人文社会科学),'中央高校基本科研业务费专项资金'资助
关键词 自组织映射 期刊 主题 可视化 self-organizing map journal subject visualization
  • 相关文献

参考文献14

  • 1刘高勇,汪会玲.基于SOM的超文本自动生成算法[J].情报科学,2007,25(6):929-931. 被引量:1
  • 2Shih B J;Shih J L;Chen R L Organizing learning materials through hierarchical topic maps:an illustration through Chinese herb medication [外文期刊] 2007(06) DOI:10.1111/j.1365-2729.2007.00230.x
  • 3Tran Q N Mining Medical Databases with Modified Gini Index Classification 2008
  • 4Berry M A;Linoff G S Mastering Data Mining 2000
  • 5Kohonen T Things you haven't heard about the Self-Organizing Map 1993
  • 6Laboratory of Computer and Information Science SOM_norm_variable (2002) 2008
  • 7Freeman R T;Yin H Adaptive topological tree structure for document organization and visualization [外文期刊] 2004(8/9) DOI:10.1016/j.neunet.2004.08.006
  • 8Ultsch A Maps for the Visualization of high-dimensional Data Spaces 2003
  • 9Ultsch A Self-Organizing neural networks for visualization and classification 1992
  • 10Moya-Anegon F;Herrero-Solana V;Jimenez-Contreras E A connectionist and multivariate approach to science maps:The SOM,clustering and MDS applied to library and information science research [外文期刊] 2006(01) DOI:10.1177/0165551506059226

二级参考文献9

  • 1Kohonen T,Self-Organized Formation of Topologically Correct Feature Maps[J].Biological Cybernetics,1982,(1):23.
  • 2R.Setiono,A neural Network Construction Algorithm Which Maximizes the Linklihood Function[J].Connection Science,1995,(2):45.
  • 3Can F,Incremental clustering for dynamic information processing[J].ACM Transactions on Information Systems,1993,(11):143-164.
  • 4Salminen A.From text to hypertext by indexing[J].ACM Transactions on Information Systems,1995,(13):69-99.
  • 5Tudhope.Navigation via similarity:Automatic linking based on semantic closeness[J].Information Processing and Management,1997,(33):233-242.
  • 6Wilkinson.Automatic link generation[J].ACM Computing Surveys,1999,(31):27.
  • 7Kohonen T.The self-organizing map[J].Neurocomputing,1998,(2):1-6.
  • 8陈福集,杨善林.一种基于SOM的中文Web文档层次聚类方法[J].情报学报,2002,21(2):173-176. 被引量:14
  • 9张毓敏,谢康林.基于SOM算法实现的文本聚类[J].计算机工程,2004,30(1):75-76. 被引量:19

共引文献6

同被引文献78

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部