期刊文献+

基于生物免疫原理的网络蠕虫免疫模型

Novel Internet worm immune model based on biological immune principles.
下载PDF
导出
摘要 提出一种新的网络蠕虫传播模型,并基于生物免疫原理提出了成熟良性蠕虫、记忆良性蠕虫和疫苗良性蠕虫新概念,建立了新的主机状态转移关系,运用系统动力学理论和方法,建立了一种新的网络蠕虫免疫模型,它能够从定性和定量两方面分析和预测网络蠕虫免疫过程,并能够深入刻画恶性蠕虫和良性蠕虫交互过程中的网络特性,为动态防治网络蠕虫提供了新的理论依据。模拟实验结果表明,引入的三种良性蠕虫是动态防御恶性网络蠕虫传播的重要因素。 A novel Internet worm propagation model is proposed.The mature friendly worms,memory friendly worms and bacterin friendly worms are defined based on the biological immune principles,and the uew transi- tion relations between host states are created.Based on the theories and methods of system dynamics,a novel Internet worm immune model is built based on biological immune principle,in which the process of Internet worm immune may be analyzed and forecasted qualitatively and quantitatively.In this model,the characteristics of alternating process of vicious worms and friendly worms can be depicted deeply.As a result,a novel theory for dynamic prevention of Internet worms is built.The simulation results show that the three friendly worms imported are important factors to dynamic prevention of Internet worm propagation.
出处 《计算机科学与探索》 CSCD 2007年第1期95-107,共13页 Journal of Frontiers of Computer Science and Technology
基金 (国家自然科学基金)No.10571112 (教育部科学研究重点项目)No.107106 (陕西省自然科学基金)No.2006F27~~
  • 相关文献

参考文献5

二级参考文献96

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2张运凯,王长广,王方伟,马建峰.“震荡波”蠕虫分析与防范[J].计算机工程,2005,31(18):65-67. 被引量:8
  • 3[2]CERT Advisory CA-2001-23. Continued Threat of the "Code Red Ⅱ" Worm. http:∥www. cert. org/advisories/CA-2001-23 .html
  • 4[3]Moore D. The Spread of the Code-Red Worm (CRv2). http:∥www. caida.org/analysis/security/-code-red/coderedv2 analysis.xml, Nov 2001
  • 5[4]Staniford S, Paxson V, Weaver N. How to Own the Internet in Your Spare Time. In: Proc of the USENIX Security Symposium, 2002
  • 6[5]Das Bistro Project's anti-code-red default.ida. http:∥www. dasbitro.com/default.ida
  • 7[6]Douglas Knowles, Frederic Perriot and Peter Szor, Symantec security response: W32/Nachi. A,http:∥www. f-prot.com/virusinfo/descriptions/nachi_A.html
  • 8[7]Douglas Knowles, Frederic Perriot and Peter Szor, Symantec security response: W32.Blaster. Worm,http:∥securityresponse.symantec.com/avcenter/venc/data/w32.blaster, worm.html
  • 9[8]Cliff Changchun Zou, Don Towsley, Email Virus Propagation Modeling and Analysis, Umass ECE Technical Report TR-03-CSE-04, May, 2003
  • 10[9]Michael Liljenstam, A Mixed Abstraction Level Simulation Model of Large-Scale Internet Worm Infestations, In: Proceedings of the Tenth IEEE/ACM Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE Computer Society Press, Fort Worth,TX, Oct 2002

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部