期刊文献+

支持向量机在字符分类识别中的应用 被引量:14

Application of support vector machines in classification and recognition of characters
下载PDF
导出
摘要 为了对数字字符和字母字符进行有效识别,提出了一种利用二值字符图像投影的特征参数构造字符特征矢量的方法,对这些特征矢量进行归一化处理并作为支持向量机的训练集.采用支持向量机和多层感知器网络对字符的特征矢量进行训练,分别构造出26个字母分类器、10个数字分类器以及36个字母-数字综合分类器.通过对字符的分类识别测试,字符识别的准确率平均为96.5%,识别速度平均为20.5ms/字符,结果表明了支持向量机在字符识别应用中的有效性. To recognize numeral and letter characters efficiently, a novel method based on characteristic parameters of the projection of binary images was proposed to construct the eigenveetors. The eigenveetors were normalized and selected as training set of support vector machines. Through training the eigen vectors of characters using support vector machines and multilayer perception networks, 26 letter classifiers, 10 number classifiers and 36 letter-number integrated classifiers were constructed respectively. Testing results showed that the average veracity and velocity of characters recognition reached 96.5% and 20.5 ms/ character respectively, and that SVM is a promising method for characters recognition.
作者 任俊 李志能
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第8期1136-1141,共6页 Journal of Zhejiang University:Engineering Science
关键词 支持向量机 字符识别 分类器 特征矢量 support vector maehines character reeognition elassifier feature vector
  • 相关文献

参考文献9

二级参考文献35

  • 1马洪庆.汽车牌照自动识别[M].杭州:浙江大学,1997,3..
  • 2VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 3VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 4SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 5SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 6CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 7LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 8SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 9ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 10DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.

共引文献217

同被引文献121

引证文献14

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部