期刊文献+

齿轮系统谐波共振的多尺度分析方法 被引量:2

Harmonious Resonance Research of Spur Cear System Through Multi-scale Approach
下载PDF
导出
摘要 考虑齿轮啮合动态刚度、传递误差、齿侧间隙等非线性因素,将时变刚度按5次谐波展开,齿侧间隙按3次多项式拟合,运用多尺度方法分析了单对直齿轮传动系统的谐波共振响应特性,讨论了系统在非共振硬激励下消去长期项的条件,给出了系统中存在的多种频率因子,发现了系统中存在2阶、3阶超谐波共振和1/2阶、1/3阶次谐波共振,推导了稳态振动下的频率响应方程,并绘制了频率响应曲线,分析了静态激励、动态激励、参数激励以及系统中阻尼对稳态响应的不同影响作用。 A nonlinear dynamic model of spur gear system with time-varying stiffness, transmission error and tooth backlash is used to investigate the dynamic behavior of the system by means of multi-scale approach. The time-varying stiffness is expanded in fifth-order harmonics as well as the tooth backlash is fitted as three-order polynomail. The conditions for eliminating long term of the system under the case of nonsyntonic excitations are discussed. It is found that secondary and triple order ultra harmonic and one-half and one-third-order sub harmonic exist in the systems. The frequencyresonance equations and corresponding curves of the steady-state renounce of the above-mentioned harmonics are obtained. The different influences on resonances of different harmonics by interior, exterior, parametric excitations and damping are illuminated.
出处 《机械设计与研究》 CSCD 北大核心 2005年第4期43-46,共4页 Machine Design And Research
基金 霍英东青年教师基金资助项目(71049)中国博士后基金资助项目(2003033321)
关键词 时变刚度 传递误差 间隙 谐波共振 多尺度法 time-varying stiffness transmission error tooth backlash harmonious resonance multi-scale approach
  • 相关文献

参考文献7

  • 1Kahraman A, Singh R Nonlinear Dynamics of a Spur Gear Pair [J ]Journal of Sound and Vibration, 1990,142( 1 ): 49~ 75.
  • 2Kahraman A, Blankenship G W Experiments on Nonlinear Dynsmic Behavior of an Oscillator with Clearance and Periodically Time- Varying Parameters [ J ] J. Appl. Mech, 1997,64: 217 ~ 226.
  • 3Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linerity [ J ]. Journal of Sound and Vibration,1995,185(5)743~765.
  • 4Raghothama A, NaJayanan S Bifurcation and chaos in geard rotor bearing system by incremental harmonic balance method[J ]. Journal of Sound and Vobration, 1999,226 (3): 469~ 473.
  • 5王三民,沈允文,董海军.含摩擦和间隙直齿轮副的混沌与分叉研究[J].机械工程学报,2002,38(9):8-11. 被引量:64
  • 6Nayfeh A H,Mook D T Nonlinear Oscillations [M]. New York:Wiley- Interscience, 1979.
  • 7王建平,王玉新.运用多尺度法对齿轮系统组合共振特性的分析[J].西安理工大学学报,2005,21(1):5-10. 被引量:6

二级参考文献10

  • 1李润方 王建军.齿论系统动力学[M].北京:科学出版社,1997..
  • 2Li Run-fang,Wang Jian-jun. Geared System Dynamic-Vibration,Shock and Noise[M](in Chinese). Beijing: Science Press,1997.
  • 3Velex P, Maatar M. A mathematical-model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior[J]. Journal of Sound and Vibration, 1996,191:629~660.
  • 4Kubur M, Kahraman A, Zini D, et al. Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment[J]. Journal of Vibration and Acoustics,2004,126:398~406.
  • 5Kahraman A, Singh R. Nonlinear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,142(1):49~75.
  • 6Kahraman A, Blankenship G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. J Appl Mech,1997,64:217~226.
  • 7B1ankenship G W, Kabaman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-1inerity[J]. Journal of Sound and Vibration, 1995,185(5): 743~765.
  • 8Raghothama A, NaJayanan S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration, 1999,226(3): 469~473.
  • 9Al-shyyab A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: Sub-harmonic motions[J]. Journal of Sound and Vibration, 2005,279:417~451.
  • 10Theodossiades S, Natsiavas S, Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and vibration, 2000,229(2):287~310.

共引文献68

同被引文献18

  • 1梁政,钟功祥,陈伟,刘让杰.1400型压裂泵动力端花键轴断裂失效分析[J].机械,2005,32(3):66-68. 被引量:6
  • 2甘春瑾,马喆,董文玲,刘刚,龚宁.桥间差速器壳输入花键轴断裂原因分析[J].金属热处理,2006,31(1):92-93. 被引量:3
  • 3Wang J, Li R, Peng X. Survey of nonlinear vibra- tion of gear transmission systems[J]. ASME Ap- plied Mechanics Review, 2003, 56(3):309-329.
  • 4Velex P, Ajmi M. On the modeling of excitations in geared systems by transmission errors[J]. Journal of Sound and Vibration, 2006, 290(3-5):882-909.
  • 5Kahraman A, Kharazi A A, Umrani M. A deform- able body dynamic analysis of planetary gears with thin rims [J]. Journal of Sound and Vibration, 2003, 262(3) ;752- 768.
  • 6Vaishya M, Singh R. Sliding friction-induced non- linearity and parametric effects in gear dynamics[J]. Journal of Sound and Vibration, 2001, 248(4):671- 694.
  • 7Velex P, Cahouet V. Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics-J]. ASME J Mech Des, 2000, 122(4) :515-522.
  • 8Ozguven H, Houser N. Dynamic analysis of high speed gears by using loaded static transmission error ]-J]. Journal of Sound and Vibration, 1988, 125 (1) :71-83.
  • 9Manish Vaishya, Rajendra Singh. Strategies for modeling friction in gear dynamics [J]. Journal of Mechanical Design, 2003, 125(2) :383-393.
  • 10张栋;钟培道;陶春虎.失效分析[M]北京:国防工业出版社,2004136-141.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部