期刊文献+

粒子群优化算法在FIR数字滤波器设计中的应用 被引量:37

Particle Swarm Optimization Algorithm for FIR Digital Filters Design
下载PDF
导出
摘要 本文针对有限脉冲响应(FIR)数字滤波器的设计实质上是一个多参数优化问题,提出了一种用粒子群优化算法(PSO)设计FIR数字滤波器的方法.首先将滤波器的设计问题转化为滤波器参数的优化问题,然后利用粒子群优化算法对整个参数空间进行高效并行搜索以获得参数的最优化.FIR数字低通、带通滤波器设计实例证明了该方法的有效性和优越性. The particle swarm is an algorithm for finding optimal region of complex search spaces through the interaction of individuals in a population of particles. A new method based on particle swarm optimization(PSO) is proposed to design FIR digital filters. The design of FIR digital filters is converted into the optimization of the parameters of FIR digital filters. PSO is used to search the whole parameters space effectively and globally in order to optimize parameters. The effectiveness and superiority of the introduced method are demonstrated by experimental results on the low pass and band pass FIR digital filters. And compared with other optimization algorithms PSO has advances in computational power.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第7期1338-1341,共4页 Acta Electronica Sinica
关键词 粒子群优化算法 FIR数字滤欺络 滤波器设计 particle swarm optimization FIR digital filters filter design
  • 相关文献

参考文献7

  • 1彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213. 被引量:44
  • 2D Kodak. Design of optimal finite wordlength FIR digital filters with linear phase[J] .IEEE Trans on Assp,1980,28(3) :304- 308.
  • 3Y C Lin,SP Parker. FIR filter design over a discrete power-of-two coefficient space[J]. IEEE Trans on Assp, 1983,31 (3) :583 - 591.
  • 4N Benveeuto, M Marchesi. Digital filters design by simulated annealing [J] .IEEE Trans on Circuit and System, 1989,36(3) :459- 465.
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc IEEE Int Conf on Neural Network[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 6Shi Y, Eberhart R C. A modified swarm optimizer[A]. IEEE International Conference on Evolutionary Computation [C]. Anchorage, AK USA: IEEE, 1998.69 - 73.
  • 7R C Eberhart, Y Shi. Comparing inertia weights and constriction factors in particle swarm optimization [A]. 2000 Congress on Evolutionary Computation[C]. CA USA:La Jolla,2000.84- 88.

二级参考文献1

  • 1现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302.

共引文献43

同被引文献343

引证文献37

二级引证文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部