摘要
本文分析多服务台可修排队系统的稳态分布存在条件。多服务台可修排队系统可利用拟生灭过程理论处理。拟生灭过程方法给出了矩阵形式的多服务台可修排队系统的稳态分布存在条件,本文由这一矩阵形式的稳态分布存在条件导出具有明显概率意义的稳态分布存在条件的另一种形式,从而证明了两种不同形式的稳态分布存在条件的一致性。
In this paper, we analyse the condition for the existence of steady-state distribution in the multiserver repairable queue system. Quasi-birth-death process theory can be used to deal with the state distribution and the multi-server repairable queueing system has been given by the quasi-birth-death process method. In this paper we derive another form of the steady-state condition which has apparent probabilistic significance from the matric form of the steady-state condition of the queueing system, so we have proved the two different forms of the conditions for the existence of steady-state distribution in the queueing system are consistent.
出处
《运筹与管理》
CSCD
2005年第4期64-69,共6页
Operations Research and Management Science
基金
河北省博士基金资助项目(2002131)
关键词
可修排队
稳态分布存在条件
马尔可夫过程
拟生灭过程
repairable queue system
condition for the existence of steady-state distribution
Markov process
quasi-birth-death process