期刊文献+

基于模拟退火的Gauss-Newton算法神经网络在短期负荷预测中的应用 被引量:4

Application of ANN to short-term power load forecasting basedon simulated annealing Gauss-Newton algorithm
下载PDF
导出
摘要 针对一般BP网络存在的一些缺陷,首次提出了利用基于模拟退火的Gauss-Newton算法的神经网络预测电力系统短期负荷,并编制了通用程序.在相同的初始条件下,用基于模拟退火的Gauss-Newton算法的神经网络和自适应学习率附加动量法神经网络进行了比较,得出前者的特点和优点:一次性求解权值和偏差,收敛快,精度高,收敛于全局最优解.在算例中,基于人工神经网络的非线性特点进行了负荷预测,通过和真实值的比较说明本方法预测结果精度很高,从而更进一步验证了该方法应用于短期负荷预测的可靠性和优势. Aimed at some limitation of ordinary BP neural network, an algorithm based on simulated annealing Gauss-Newton algorithm applied to neural network which predicts short-term power load forecasting originally and describes universal procedure. On the same initial conditions, the paper compares the neural network based on simulated annealing Gauss-Newton algorithm with the neural network based on adaptive learning ratio and additive momentum algorithm, and explains the characteristic and excellence of the former., getting weight and bias one-off, quicker convergence, higher precision and global optimization. As an example, based on the non linear characteristic of ANN, the method is applied to power load forecasting. Compared with the actual value, prediction error of our method is acceptable, which illuminates the reliability and superiority of the algorithm ap plied to short term power load forecasting.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2005年第4期28-33,共6页 Engineering Journal of Wuhan University
关键词 非线性 模拟退火的Gauss-Newton算法 负荷预测 可靠性 nonlinear simulated annealing Gauss-Newton algorithm power load forecasting reliability
  • 相关文献

参考文献11

  • 1牛东晓,陈志业,邢棉,谢宏.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32. 被引量:99
  • 2Mastorocostas P A ,Theocharis J B ,Bakirtzis A G. Fuzzy modeling for short term load forecasting using the orthogonal least squares method[J].IEEE Trans on Power Systems,1999,14(1):29-36.
  • 3Charytoniuk W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting[J]. IEEE Trans on Power Systems,1998,13(3):725-730.
  • 4Papalexopoulos A D, Hesterberg T C. A regression based approach to short term system load forecasting[J]. IEEE Trans on Power Systems ,1990.1535-1547.
  • 5K L Ho, Y Y Hsu, C F Chen, T E Lee, C C Liang, T S Lai, K K Chen. Short term load forecasting of Taiwan power system using a knowledge-based expert system[J].IEEE Trans on Power Systems, 1990,5(4):1214-1221.
  • 6Taylor J W, Buizza R. Neural network load forecasting with weather ensemble predictions[J].IEEE Trans on Power Systems,2002,17(3):626-632.
  • 7Senjyu T, Takara H, Uezato K, Funabashi T. One-hour-ahead load forecasting using neural network[J].IEEE Trans on Power Systems ,2002,17(1):13-118.
  • 8Mohan Saini L, Kumar Soni M. Artificial neural network-based peak load forecasting using conjugate gradient methods[J]. IEEE Trans on Power Systems,2002,17(3):907-912.
  • 9尤勇,盛万兴,王孙安.一种新型短期负荷预测模型的研究及应用[J].中国电机工程学报,2002,22(9):15-18. 被引量:36
  • 10高尚.模拟退火算法中的退火策略研究[J].航空计算技术,2002,32(4):20-22. 被引量:29

二级参考文献9

共引文献157

同被引文献64

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部