期刊文献+

一种基于人工免疫的新的频繁项挖掘算法 被引量:1

Information Feature Extraction Based on Immune Aglorithm
下载PDF
导出
摘要 以往算法的研究主要围绕着减少候选项目集进而减少事务数据库的扫描次数的角度,先求出候选项集,再计算候选项集的支持度求得频繁项集。本文改变过去求频繁项集的角度,从新的角度来看频繁项目集的定义,同时结合人工免疫的特点,设计一个基于人工免疫的新频繁项集挖掘算法。本文详细介绍了算法设计等。新算法的复杂度与支持度,数据库总容量有关。验证实验的结果与其他算法相比较证明了该算法的可行性、有效性和完备性。 Tradition algorithm attempted to improve the mining efficiency reducing the number of database passes to control the I/O cost, which at first derives candidate itemsets from tuples in database,and count support of candidate itemsets to get frequent itemsets. Changing the former way of discovering frequent itemsets, we can understand the definition of frequent itemsets from another standpoint. Making use of atifical immune strategy , this paper present a new algorithm. In the paper, the algorithm is introduced in detail. The cost of new algorithm is related to the support and the total number of database. Finally, simulation shows the correctness and validity compared with pther algorithm.
作者 王评 陈国龙
出处 《计算机科学》 CSCD 北大核心 2005年第8期155-157,共3页 Computer Science
基金 福建省自然科学基金(编号:A0410010) 福州大学科技发展基金(编号 2003-xq-23)
关键词 免疫算法 频繁项集 支持度 关联规则 挖掘算法 人工免疫 事务数据库 候选项集 算法设计 候选项目集 Immune algorlthm, Support, Associate rules , Frequent itemsets
  • 相关文献

参考文献6

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database. In: Peter Buneman, Sushil Ajodia eds. Proc of ACM SIGMOD Conf on Management of Data,New York: ACM Press, 1993. 207~216.
  • 2Han Jiawei,Kamber Micheline. Data Mining:Concepts and Techniques. Morgan Kaufmann Publishers, 2001.
  • 3S de Castro L N, Von Zuben F J. Artificial Immune Svstems: Part IBasic Theory and Applications[R]: [TR-DCA01/99]. 1999.
  • 4Chun J S, Kim M K, et al. Shape Optimization of ElectromagneticDevices Using Immune Algorithm. IEEE Trans on Magnetics,1997,33(2):1876~1897.
  • 5王晓峰,王天然,赵越.一种自顶向下挖掘长频繁项的有效方法[J].计算机研究与发展,2004,41(1):148-155. 被引量:27
  • 6Lin Dao-Ⅰ, Kedem Z M. Princer-Search: A New Algorithm for Discovering the Maximum Frequent Set. In: Bertram Ludascher,Wolfgang May, eds. Proc of the 6th European Conf. on Extending database technology, Proc. Lecture Note in Computer 1377. Berlin: Springer 1998,1998. 105~119.

二级参考文献8

  • 1[1]R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. In: Peter Buneman, Sushil Ajodia eds. Proc of ACM SIGMOD Conf on Management of Data, New York: ACM Press, 1993. 207~216
  • 2[2]J Han, J Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2000, 2(2): 14~20
  • 3[3]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation, In: M Dunham, J Naughton, W Chen eds. Proc of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York: ACM Press, 2000. 1~12
  • 4[4]J Roberto, Jr Bayardo. Efficiently mining long patterns from databases. In: Ashutosh Tiwary, Boeing Co eds. Proc of the 1998 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'98), New York: ACM Press, 1998. 85~93
  • 5[5]D-I Lin, Z M Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: Bertram Ludscher, Wolfgang May eds. Proc of the 6th European Conf on Extending database technology, Proceedings, Lecture Note in Computer 1377. Berlin: Springer 1998, 1998. 105~119
  • 6[6]Z Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. Holland: Kluwer Academic Publishers, 1991
  • 7[7]Hu Xiaohua. Knowledge discovery in database: An attribute-oriented rough set approach [Dissertation]. University of Regina, Canada, 1995
  • 8[8]Collections of data for developing, evaluating, and comparing learning methods. 2001. http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html

共引文献26

同被引文献7

  • 1彭银香,何小东,朱志勇.基于免疫算法的多维关联规则挖掘方法[J].微计算机信息,2007,23(3):171-173. 被引量:4
  • 2刘芳,孙杨军.基于多克隆选择的多维关联规则挖掘算法[J].复旦学报(自然科学版),2004,43(5):742-745. 被引量:9
  • 3de Castro L N, von Zuben F J. The clonal selection algorithm with engineering applications[C] // Proceedings of GECCO ' 00, Workshop on Artificial Immune Systems and Their Applications. London, UK: Springer, 2000 : 36
  • 4Dao-I Lin, Kedem Z M. Pincer-search: an efficient algorithm for discovering the maximum frequent set[J]. Knowledge and Data Engineering, IEEE Transactions:2002,14 (3) : 553
  • 5莫宏伟.人工免疫原理[M].哈尔滨:哈尔滨工业大学出版社,2003.
  • 6韩家炜.数据挖掘概念与技术[M].北京:机械工业出版社,2004.
  • 7王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部