期刊文献+

基于分布式电力资源库的搜索引擎框架 被引量:9

Framework of Searching Engine Based on Distributed Electrical Resource Database
下载PDF
导出
摘要 在建设电力资源平台的基础上,提出基于分布式电力资源库的由Agent管理系统、共享Agent、搜索引擎界面、搜索词获取机、智能搜索机和跟踪评价机组成的搜索引擎框架。通过基于电力专业词库的分词、专业词规范、机器翻译等面向电力专业的处理,在跟踪用户搜索行为的基础上结合相似检索优化和数据挖掘该搜索引擎可为用户提供个性化、智能化的电力资源搜索服务,有效提高电力信息搜索的查准率、查全率和查找速度。 The existing methods to obtain electrical information cannot match the development and deep-seated application of electrical information resource because of its low capability. After building electrical resource platform, this paper proposes the framework of search engine based on distributed electrical resource database. The framework consists of Agent Manager System, Shared Agent, Interfaces, Acquiring Searching-words Machine, Intelligent Search Machine and Track and Value Machine. By the processes facing the Power Speciality, such as part word, term standardization and machine translation based on electrical power word base, combining similar search optimizing and data miner based on tracking the consumer's search actions, the search engine can offer user individual and intelligent search service. The search engine can also greatly improve greatly the three important elements in searching electrical information: the efficiency of searching exact information, the efficiency of searching out all information and the search speed.
出处 《高电压技术》 EI CAS CSCD 北大核心 2005年第8期66-68,共3页 High Voltage Engineering
基金 武汉大学国家多媒体软件工程技术研究中心开放基金
关键词 分布式 电力资源 搜索引擎 框架 移动代理 AGENT 数据库 distributed electrical resource search engine framework mobile agent agent database
  • 相关文献

参考文献7

二级参考文献18

  • 1Girarratano J Riley G.专家系统原理和编程[M].北京:机械工业出版社,2000..
  • 2赖茂生 徐克敏.科技文献检索[M].北京:北京大学出版社,1993.175.
  • 3[1]Lam Wai, et al. Automatic Text Categorization and Its Application to Text Retrieval[J]. IEEE Transactions on Knowledge and Data Engineering, 1999, 11 (6): 865-879.
  • 4[2]Man dala Rila, Tokunaga Takenobu, Tanaka Hozumi. Query Expansion Using Heterogeneous Thesauri [J]. Information Processing and Management,2000, 36 (3): 361-378.
  • 5[3]Chakrabarti So umen, et al. Topic Distillation and Spectral Filtering[J]. Artificial Intelligence Review , 1999, 13(5) :409-435.
  • 6[4]David 1 Lewin. Intelligencer, Commonsense Al: Instilling Common Sense into Software[J]. IEEE Intelligent Systems, 2000,15(4).
  • 7[5]Craven Mark,DiPasquo Dan,Freitag, et al. Learning to Construct Knowledge Bases from the World Wide Web [J]. Artificial Intelligence,2000, 118(2) :69-113.
  • 8[6]Lesser Victor,et al. BIG:an Agent for Resource-bounded Information Gathering and Decision Making [J]. Artificial Intelli-gence, 2000, 118(1): 197-244.
  • 9[7]Choi Yong S, Yoo Suk I. Discovering Text Databases on the Internet:Neural Net Agent Approach[ C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Tokyo,Japan:1999.
  • 10[8]Alsaffar A H, Deogun J S, Raghavan, et al. Enhancing Concept-based Retrieval Bas ed on Minimal Term Sets [J]. Journal of Intelligent Information Systems,2000, 14(2-3): 155-173.

共引文献41

同被引文献63

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部