期刊文献+

稳定性可保证二阶格式在多重网格中的有效性和经济性

Efficiency and Accuracy of Stability-Guaranteed Second-Order Di fference Scheme in Full-Multigrid Method
下载PDF
导出
摘要 基于一种稳定性可保证的二阶差分格式(SGSD),对SIMPLE算法实施了完全多重网格循环以加速外迭代的收敛.采用规正变量的方法实施了SGSD.通过对二维顶盖驱动流动的计算,分析了多重网格在SIMPLE算法中的收敛特性.计算结果表明:SGSD格式具有与其他高阶格式及高阶组合格式相同的计算精度,且收敛速度优于其他高阶格式,在雷诺数较高时(Re=3 000),其收敛速度是二阶迎风格式的1.77倍,是QUICK格式的1.37陪,同时在疏密网格层次上均可以保证计算的稳定性;采用多重网格加速SIMPLE算法的迭代时,不仅要考虑多重网格的循环方式,还要考虑对流项的离散格式,在计算中SGSD格式具有明显的优势. Based on a new stability-guaranteed second-order difference (SGSD) scheme, the full multigrid cycle was implemented in SIMPLE algorithm in order to accelerate convergence of outer-iteration. The difference scheme was implemented by using normalized variable method. The convergence characteristics of full multigrid cycle in SIMPLE algorithm were analyzed by numerical simulation of 2D lid driven cavity flow. The results show that the SGSD scheme can reach second-order accuracy compared with other high- order schemes and the convergence rate is higher than that of other schemes. The convergence rate of SGSD is 1.77 times that of second-order upwind difference scheme and 1.37 times that of QUICK scheme with Re=3000, and the stability can be guaranteed in coarse or fine grid. When the multigrid technique is adopted to accelerate the convergence rate, both the circulation pattern and the discretization scheme of convection term should be taken into account. In this regard, the SGSD scheme has an obvious advantage for multigrid implementation.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第9期974-977,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50476046).
关键词 稳定性可保证二阶差分格式 多重网格 有效性 经济性 stability-guaranteed second-order difference scheme multigrid efficiency accuracy
  • 相关文献

参考文献13

  • 1Patankar S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980.
  • 2Shyy W, Thakur S S,Ouyang H,et al. Computational techniques for complex transport phenomena[M].New York: Cambridge University Press, 1997.
  • 3张玮,王元,徐忠.多重网格技术在SIMPLE内外迭代中的应用[J].西安交通大学学报,2001,35(7):670-674. 被引量:4
  • 4Sivaloganathan S, Shaw G J. A multigrid method for recirculating flows[J]. International Journal for Numerical Methods in Fluids, 1988, 8(4):417-440.
  • 5Vanka S P. Fast numerical computation of viscous flow in a cube[J]. Numerical Heat Transfer: Part B,1991, 20(2) :255-261.
  • 6Gjesdal T, Lossius M E H. Comparison of pressure correction smoothers for multigrid solution of incompressible flow [J]. International Journal for Numerical Methods in Fluids, 1997, 25(4) :393-40S.
  • 7Lien F S, Leschziner M A. Mutigrid acceleration for recirculating laminar and turbulent flows computed with a non orthogonal, collocated finite-volume scheme[J]. Carnputer Methods in Applied Mechanics and Engineering, 1994, 118(3):351-371.
  • 8Li Z Y, Tao W Q. A new stability guaranteed second order difference scheme[J]. Numerical Heat Transfer: Part B, 2002, 42(4):349-365.
  • 9Leonard B P. Simple high accuracy resolution program for convective modeling of the discontinuities[J]. International Journal for Numerical Methods in Fluids,1988, 8(10):1 291-1 318.
  • 10Hayase T, Humphery J A C. A consistently formulated QUICK scheme for fast and stable convergence using finite volume iterative calculation procedure [J].Journal Computational Physics, 1992, 98(1) : 108-118.

二级参考文献3

  • 1陶文铨,计算传热学近代进展,2000年,308页
  • 2刘超群,多重网格法及其在计算流体力学中的应用,1995年,8页
  • 3Ghia U,J Comput Phys,1982年,48卷,387页

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部