期刊文献+

青藏高原高寒草甸生态系统净二氧化碳交换量特征 被引量:62

Net ecosystem carbon dioxide exchange of alpine meadow in the Tibetan Plateau from August to October
下载PDF
导出
摘要 高寒草甸是青藏高原广泛分布的植被类型之一,面积约120万km2,地处青藏高原腹地的当雄草原站即位于该类植被的典型分布区.以2003年8~10月中旬在该站用涡度相关法连续观测的CO2通量数据资料为基础,分析了高寒草甸生态系统8~10月份净二氧化碳交换量(NEE)的日变化规律,及其与光合有效辐射、降水、温度等环境因子之间的关系.结果表明,8~10月份的日均NEE有明显的日变化,表现为单峰型,通常在地方时11:00~12:00左右达到碳吸收的最大值,平均为-0.2680 mg CO2/(m2·s)(-6.0800μmol CO2/(m2·s)).白天的NEE与光合有效辐射之间符合很好的直角双曲线关系,表观量子产额平均为0.0203μmol CO2/μmol PAR,表观最大光合速率平均为 9.7411 μmolCO2/(m2·s).夜晚的NEE与5cm地温有很好的指数函数关系. The alpine meadow is widely distributed on the Tibetan Plateau, covering about 1.2 million km^2. At the Damxung Grassland Station, located in the hinterland of the plateau 15 the place covered with this typical vegetation. The continuous carbon flux (from August to middle October, 2003) of the alpine meadow was measured using the open-path eddy covariance systems in order to analyze the diurnal variation patterns of net ecosystem carbon dioxide exchange (NEE) and its relationship with environmental factors, such as photosynthetically active radiation (PAR), precipitation and temperature. Obvious diurnal variation patterns of NEE with single peaked carbon assimilation were observed at 11:00 - 12:00 (local time) with an average of -0. 2680 mg CO2/(m^2 · s) (-6. 08μmol CO2/(m^2 · s)). During the daytime, NEE fitted fairly well with PAR in a rectangular hyperbola function, with apparent quantum yield of 0. 0203μmol CO2/μmol PAR and maximum ecosystem assimilation of 9. 7411 μmol CO2/(m^2·s). In the nighttime, NEE was fairly exponentially related with the soil temperature at 5cm below ground.
出处 《生态学报》 CAS CSCD 北大核心 2005年第8期1948-1952,共5页 Acta Ecologica Sinica
基金 国家973计划资助项目(2002CB412501)~~
关键词 青藏高原 高寒草甸 涡度相关法 二氧化碳通量 环境因子 Tibetan Plateau alpine meadow eddy covariance carbon dioxide flux environmental factors
  • 相关文献

参考文献12

  • 1刘允芬,张宪洲,周允华,张谊光,喻朝庆.西藏高原田间冬小麦的表观光合量子效率[J].生态学报,2000,20(1):35-38. 被引量:22
  • 2张宪洲,王其冬,张谊光.青藏高原4—10月太阳总辐射的分光测量[J].气象学报,1996,54(5):620-624. 被引量:8
  • 3Baldocchi D, Finnigan J, Wilson K, et al. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain.Boundary-Layer Meteorology, 2000,96: 257 ~ 291.
  • 4Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer Quarterly Journal of the Royal Meteorological Society, 1980,106 : 85 ~ 100.
  • 5Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible and annual sums of net ecosystem exchange. Agrtc. For.Meteorol. , 2001,107 : 43 ~ 69.
  • 6Kim J, Verma S B. Carbon dioxide exchange in a temperate grassland ecosystem 13ound. Layer Meteorol. , 1990,52: 135~149.
  • 7Dugas W A, Heuer M L, Mayeux H S. Carbon dioxide fluxes over bermudagrass, native prairie and sorghum. Agric. For. Meteorol. ,1999,93: 121~ 139.
  • 8Hunt J E, Kelliher F M, et al Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agric. For. Meteorol. , 2002,111:65~82.
  • 9Lawerence B, Flanagan, Linda A, et al Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 2002,8 :599 ~ 615.
  • 10Andrew E, Suyker and Shashi B Verma. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biology,2001,7:279~289.

二级参考文献13

共引文献27

同被引文献1017

引证文献62

二级引证文献784

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部