期刊文献+

分布环境中的并行频繁模式挖掘算法 被引量:3

Parallel Algorithm for Mining Frequent Patterns in Distributed Environment
下载PDF
导出
摘要 频繁模式的并行挖掘算法是数据挖掘中重要的研究课题。目前已经提出的并行算法大多是基于Apriori或基于FP-tree。由于两者的固有局限性,而且在计算过程中需要多次同步,因而具有较低的性能。文章提出了一种基于分布数据库的并行挖掘算法。该算法尽可能地让每个处理器独立地挖掘,每个处理器基于前缀树采用深度优先搜索的策略挖掘局部频繁模式集,并通过相关性质尽量减少候选全局频繁模式的规模,减少网络的通信量和同步次数以提高挖掘效率。 Parallel mining frequent patterns is a key problem in data mining research.There are many parallel algorithms based on Apriori or FP-tree,which have some inherent drawbacks and require many synchronization steps. So, they achieve poor performances.Therefore,parallel mining algorithm PMFP in distributed database is proposed.PMFP attempts to make each processor to do independently and decrease the number of candidate of global frequent patterns according to the relation between local frequent pattern and global frequent pattern.Therefore,the algorithm uses far less communication overhead and fewer synchronization steps,improves efficiency of mining global frequent patterns.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第25期1-3,22,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60273075)
关键词 频繁模式 并行算法 前缀树 全局频繁模式 frequent patterns,parallel algorithm,prefix tree,global frequent pattern
  • 相关文献

参考文献10

  • 1Agrawal R,Srikant R.Fast Algorithm for Mining Association Rules[C]. In : VLDB' 94,1994-09:489-499.
  • 2Park J S,Chen M-S,Yu P S.An Effective Hash Based Algorithm for Mining Association Rules[C].In:Proc ACM SIGMOD Int Conf on Management of Data, 1995 : 175-186.
  • 3Agarwal R,Aggrawal C,V V V Prasad.A Tree Projection Algorithm for Generation of Frequent Itemsets[J].Journal of parallel and Distributed Computing, 2000:427-434.
  • 4J Han,J Pei,Y Yin.Mining Frequent Patterns Without Candidate Generation[C].In : Proc ACM-SIGMOD, Dallas ,TX, 2000-05.
  • 5R Agrawal,J C Shafer.Parallel Mining of Association Rules[J].IEEE Trans on Knowledge and Data Engineering,1996;8(6):962-969.
  • 6Jong Soo Park ,Ming-Syan Chen,Philip S Yu.Efficient Parallel and Data Mining for Association Rules[C].In:Proceedings of the 1995 International Conference on Information and Knowledge management, Baltimore, Maryland, USA, 1995 : 31 -36.
  • 7David Wai-Lok Cheung,Vincent Ng,Ada Wai-Chee Fu et al.Efficient Mining of Association Rules in Distributed Databases[J].IEEE Transaction on Knowledge and Data Engineering, 1996; 8 ( 1 ) :911 -922.
  • 8A Schuster,R Wolff.Communication efficient distributed mining of association rules[C].In:Proc of the 2001 ACM SIGMOD Int'l Conference on Management of Data ,2001-05:473-484.
  • 9杨明,孙志挥,吉根林.快速挖掘全局频繁项目集[J].计算机研究与发展,2003,40(4):620-626. 被引量:35
  • 10朱光喜,吴伟民,阮幼林,刘干.一种基于前缀树的频繁模式挖掘算法[J].计算机科学,2005,32(4):34-36. 被引量:4

二级参考文献9

  • 1RAgrawa1 TImie1inSki Aswami.Mining association ru1es between sets of items in 1arge database[J].The ACM SIGMOD Intemationa1 Conf on Management of Data, Washington, DC,1993,.
  • 2Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules. In VLDB' 94,Sep. 1994. 489~499
  • 3Park J S,Chen M-S,Yu P S. An Effective Hash Based Algorithm for Mining Association Rules. In:Proc. ACM SIGMOD Int. Conf.on Management of Data,1995. 175~186
  • 4Chen M Y, Han J, Yu P. Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering. 1996,8 (6): 866~ 883
  • 5Hah J,Pei J,Yin Y. Mining Frequent Patterns Without Candidate Generation. In:Proc. ACM-SIGMOD, Dallas, TX, May 2000
  • 6Agarwal R,Aggrawal C,Prasad V V V. A Tree Projection Algorithm for Generation of Frequent Itemsets ,Journal of parallel and Distributed Computing, 2000. 427~434
  • 7Huang H,Wu X,Relue R. Association Analysis with One Scan of Databases. In: Proc. of Pacific-Asia Conference, PAKDD, 2002.334~334
  • 8Liu Guimei,Lu Hongjun,Xu Yabo ,Yu J Xu. Ascending Frequency Ordered Prefix-tree: Efficient Mining of Frequent Patterns. In:Proc. of 8th Database Systems for Advanced Applications (DASFAA'03)
  • 9路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献37

同被引文献18

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部