期刊文献+

基于HMMSVM的混合故障诊断模型及应用 被引量:11

HMM-SVM Based Mixed Diagnostic Model and Its Application
下载PDF
导出
摘要 针对直升机减速器故障诊断中机器学习方法存在的问题,根据隐马尔可夫模型(HMM)适合于处理连续动态信号与支持向量机(SVM)适合于模式分类的长处,提出了基于HMMSVM的混合故障诊断模型。先通过小波包分析方法从减速箱振动信号中有效提取非平稳特征,训练HMMSVM模型,再利用训练好的模型进行监测与诊断,实验结果表明该方法优于单纯的HMM或SVM诊断方法,能利用少量训练样本有效地完成直升机减速器的故障诊断。 The gearboxes are very important to the transmission system of a helicopter, so it is necessary to monitor and diagnose their conditions and faults. Because of the merit of hidden Markov model (HMM) that has the ability to deal with continuous dynamic signals and the merit of support vector machine (SVM) with perfect classify ability, the HMM-SVM based diagnostic method is presented. With the features extracted from vibration signals by wavelet packet decomposition, the HMM-SVM diagnostic model is trained and used to monitor and diagnose the gearbox's conditions and faults. The results show that this proposal method is better than HMM-based and SVM-based diagnosing methods in high diagnostic accuracy with small training samples.
出处 《航空学报》 EI CAS CSCD 北大核心 2005年第4期496-500,共5页 Acta Aeronautica et Astronautica Sinica
基金 十五国防预研资助项目
关键词 隐马尔可夫模型 支持向量机 小波包 故障诊断 减速器 hidden Markov model support vector machine wavelet packet fault diagnosis gearbox
  • 相关文献

参考文献1

二级参考文献8

  • 1Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of Computer Vision and Pattern Recognition 97', Puerto Rico, 1997. 130 ~ 136.
  • 2Platt J. Fast training of SVMs using sequential minimal optimization. In:Scholkpf B, Burges C, Smola A, eds., Advances in kernel methods-support vector machine learning, Cambridge: MIT Press, 1998.
  • 3Berther T, Davies P. Condition monitoring of check valves in reciprocating pumps. Tribology Transactions, 1991, 34:321 ~326.
  • 4Xu W H, Fu K. An intelligent diagnostic system for reciprocating machine.In: Proceedings of IEEE International Conference on Intelligent Processing Systems, Beijing, 1997, 1 520~ 1 522.
  • 5Sbi Wengang, Wang Rixin, Huang Wenhu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Toronto, 2001. 1 247~ 1 250.
  • 6Boser B, Guyon I, Vapnik B. A training algorithm for optimal margin classitiers. In: Fifth Annual Workshop on Computational leaming Theory, Pittsburgh: ACM Press, 1992.
  • 7Cortes C, Vapnik V. Support-vector networks. Machine Learing, 1995,20:273 ~ 297.
  • 8Lecun Y, Jackel L D, Bottou L. Learning algorithms for classification: a comparison on handwritten digit recognition. Neural Networks: The Statistical Mechanics Perspective, World Scientific, 1995. 261 ~ 276.

共引文献31

同被引文献82

引证文献11

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部