期刊文献+

基于流的网络流量特征分析 被引量:7

Analysis of Network Traffic Based on Flow Level
下载PDF
导出
摘要 网络流量特征分析是提高网络性能的基础.其自相似特征是一个普遍存在的现象.通过对主干链路上的流量进行基于流的流量特征的分析,结果表明流间隔时间序列在小时间尺度上的自相似程度较弱,而大时间尺度上的自相似程度较强.进一步的分析表明,流的大小以及ICMP流对流的自相似特征有显著的影响,特别是流大小为1个包的流对其影响更大. The analyzing characteristic of network traffic is the base to prompt network performance. The self-similarity is a common characteristic of network traffic. Through the analyzing characteristics of backbone network traffic at flow level, it shows that the self-similarity of the time series of flow intervals at small time scales is weaker whereas it is stronger at large time scales. The further study shows the size of flows and the ICMP flows apparently affects the self-similarity. Especially, those flows of one packet have larger effects.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第9期1454-1458,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目基金(2002AA121032)资助.
关键词 网络流量 特征 自相似 多分形 network traffic characteristics self-similar multi-fractal
  • 相关文献

参考文献13

  • 1Sarvotham S, Riedi R, Baraniuk R. Connection-level analysis and modeling of network traffic[R]. Tech. Rep. , ECE Dept. ,Rice Univ. , July 2001.
  • 2Wang X, Sarvotham S, Riedi R et al. Network traffic modeling using connection-level information [C]. Proceedings SPIE IT-Com, Boston, MA, August 2002.
  • 3Fang Wen-jia. Larry Peterson. Inter-AS traffic patterns and their implications[C]. In:Proceeding of IEEE GLOBECOM 99,Rio de Janeiro, Brazil, 1999, 1859-1868.
  • 4Supratik Bhattacharyya, Christophe Diot, Jorjeta Jetcheva, and Nina Taft. Pop-level and access-link-level traffic dynamics in a tier-1 POP[C]. In: Proceeding of ACM SIGCOMM Internet Measurement Workshop 2001, San Francisco Bay Area, 2001,39-54.
  • 5Thompson K, Miller G, Wilder R. Wide area internet traffic patterns and characteristics [J]. IEEE Network Magazine,1997, 11, 6:10-23.
  • 6Claffy K C, Braun H W, Polyzos G C. A parameterizable methodology for internet traffic flow profiling[J]. IEEE Journal on Selected Areas in Communications, 1995,13 (8) : 1481-1494.
  • 7Zhang Y, Qiu L. Understanding the end-to-end performance impact of RED in a heterogeneous environment[R]. Cornell CS Technical Report 2000-1802, July 2000, available from http://www. aciri, org/floyd/red, html.
  • 8Nevil Brownlee, kc claffy. Understanding internet traffic streams: dragonflies and tortoises [J]. IEEE Communications Magazine, 2002,40(10) :110-117.
  • 9Zhang Z, Ribeiro V, Moon S, Diot C. Small-time scaling behaviors of internet backbone traffic., an empirical study[C]. INFOCOM 2003.
  • 10Abry P, Veitch D. Wavelet analysis of long range dependent traffic[J]. IEEE Transactions on Information Theory, 1998,44,(1) : 2-15.

同被引文献32

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部