期刊文献+

层状和MSU结构的介孔纳米二氧化锆 被引量:2

Mesoporous Nanocrystalline Zirconia with Lamellar and MSU Structure
下载PDF
导出
摘要 在不添加任何结构稳定剂的条件下,首次用固态反应结构导向法成功地合成了具有层状结构和MSU结构的介孔纳米二氧化锆.研究发现,通过有效地控制晶化条件,二氧化锆的晶相、比表面和孔结构可以方便地得以调变.晶相的转变由粒度大小控制,并且构成无机骨架的相态不同,合成样品的热稳定性存在差异.结果显示,介孔纳米二氧化锆的形成仍遵循超分子液晶模板机制,且由碱锆摩尔比的大小控制介观相的转化,低碱锆摩尔比条件下形成层状相,而高碱锆摩尔比条件下为维持整个体系的低能稳定状态,在电荷作用下形成反棒状胶束结构. Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH^-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH^-/Zr molar ratios but reverse hexagonal was at low ratios.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2005年第18期1769-1774,共6页 Acta Chimica Sinica
关键词 固态反应 介孔 纳米 二氧化锆 层状结构 MSU结构 形成机制 纳米二氧化锆 合成样品 摩尔比 solid state reaction mesopore nanocrystalline zirconia lamellar structure MSU structure mechanism
  • 相关文献

参考文献4

二级参考文献30

  • 1[1]Mamak M,Coombs N,Ozin G.Self-assembling solid oxide fuel cell materials:mesoporous yttria-zirconia and metal-yttria-zirco-nia solid solutions.J Am Chem Soc,2000,122:8932~8939
  • 2[2]Verveij H,Nanocrystalline and Nanoporous Ceramics.Adv Mater,1998,10:1483~1486
  • 3[3]Ziehfreund A,Simon U,Maier W F.Oxygen ion conductivity of plantium-impregnated stabilized zirconia in bulk and microporous materials.Adv Mater,1996,8:424
  • 4[4]Berkel F P F van,Heuveln F H van,Huijsmans J P P.Characterization of solid oxide fuel-cell electrodes by impedance spectroscopy and IV-characteristics.Solid State Ionics,1994,72:240~247
  • 5[5]Huo Q,Margolese D I,Ciesla U,et al.Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays.Chem Mater,1994,6:1176~1191
  • 6[6]Huo Q,Margolese,D I,Ciesla U,et al.Generalized synthesis of periodic surfactant inorganic composite materials.Nature,1994,368:317~321
  • 7[7]Ciesla U,Demuth D,Leon R,et al.Surfactant controlled preparation of mesostructured transition-metal oxide compounds.Chem Commun,1994,11:1387~1388
  • 8[8]Abe T,Taguchi A,Iwamoto M.Non-silica-based mesostructured materials.1.Synthesis of vanadium oxide-based materials.Chem Mater,1995,7:1429~1430
  • 9[9]Stein A,Fendorf M,Jarvie T P,et al.Salt-gel synthesis of porous transition-metal oxides.Chem Mater,1995,7:304~313
  • 10[10]Janauer G G,Dobley A,Guo J,et al.Novel tungsten,molybdenum,and vanadium oxides containing surfactant ions.Chem Mater,1996,8:2096~2101

共引文献71

同被引文献48

  • 1张雄飞,王成峰.电化学合成氧化锆纳米粉体[J].硅酸盐学报,2006,34(3):389-392. 被引量:12
  • 2靖波,陈晓,隋震鸣,王庐岩,柴永存,邱化玉.层状溶致液晶中磁性纳米粒子掺杂的研究[J].化学学报,2006,64(13):1319-1323. 被引量:1
  • 3王科,陈洪龄.以活性炭为模板制备纳米ZrO_2粉体[J].机械工程材料,2007,31(8):70-72. 被引量:3
  • 4季军晖,史维明.抗菌材料[M].北京:化学工业出版社,2003,295-296.
  • 5Ding,J.H.;Gin,D.L.Chem.Mater.20110,12,22.
  • 6Andersson,M.;Alfredsson,V;Kjellin,P.;Palmqvist,A.E.C.Nano Lett.2002,2,1403.
  • 7Qi,L.M.;Gao,Y Y;Ma,J.M.Colloids Surf.,A 1999,157,285.
  • 8Kijima,T.;Yoshimura,T.;Uota,M.;Ikeda,T;Fujikawa,D.;Mouri,S.;Uoyama,S.Angew.Chem.,Int.Ed.2004,43,228.
  • 9Attard,G S.;Bartlett,E N.;Coleman,N.R.B.;E1liott,J.M.;Owen,J.R.;Wang,J.H.Science 1997,278,838.
  • 10Elliott,J.M.;Attard,G S.;Bartlett,E N.;Coleman,N.R.B.;Merckel,D.A.S.;Owen,J.R.Chem.Mater.1999,11,3602.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部