摘要
根据凸分析理论和单纯形法原理,提出了整数规划的一个线性规划解法。该方法主旨是将整数规划问题的离散的可行集填充成一个连续的单纯形,这样原整数规划问题就化为该单纯形上的一个新的线性规划问题。利用单纯形法求解该线性规划问题,便可得到整数规划的最优解。且进一步提出并证明了指派问题的线性规划解法。
According to the theory of convex analysis and the principle of simplex method, this paper provides a linear programming solution to Integer Linear Programming(ILP) . The main idea of the solution is that a discrete set consists of all the feasible solutions of ILP is stuffed into a continuous simplex, consequently the ILP is transformed into a new Linear Programming(LP). By using simplex method to .solve the LP, the optimal solution of ILP can be obtained. In addition, the Linear Programming .solution of assignment problem is offered.
出处
《系统工程》
CSCD
北大核心
2005年第7期26-28,共3页
Systems Engineering
基金
院培育基金资助项目(040118)
关键词
运筹学
整数规划
线性规划
单纯形法
最优基本解
Operational Research
Integer Linear Programming (ILP)
Linear Programming (LP)
Simplex Method
Optimal Basic Solution