摘要
研究了非线性分数微分方程解的存在性.通过考察非线性项在无穷远处的增长或者非线性项在某个有界集上的“高度”获得了若干新的存在性结论.主要工具是Schauder不动点定理和Leray-Schauder不动点定理.
The existence of solution is investigated in this paper for a nonlinear fractional differential equation. By considering the growth of nonlinear term at infinite and the “height” of nonlinear term on a bounded set, several new existence results are obtained. The main ingredients are the Schauder fixed point theorem and the LeraySchauder fixed point theorem.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2005年第3期297-302,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
分数微分方程
存在性
增长条件
局部条件
不动点定理
fractional differential equation
existence
growth condition
local condition
fixed point theorem