期刊文献+

基于平均检索精度的图像特征融合方法 被引量:4

Feature Fusion Based on the Average Precision in Image Retrieval
下载PDF
导出
摘要 在基于内容的图像检索中,不同图像特征反映了图像不同侧面的内在特性,如何有效地组织和利用这些特征从而提高系统的检索性能是一个值得研究的课题.首先提出了特征互补率的定义,通过计算互补矩阵有指导地选择融合特征集.实验结果表明,互补矩阵能够很好地估计特征之间的补充能力.同时提出了基于平均检索精度的特征线性融合方法,并在一个包含12000张异质图像的大型图像库上与当前图像检索中最常用的几种方法进行了对比实验,结果表明这种方法具有更高的精度. In content-based image retrieval, image has various inherent aspects which reflect its contents, therefore how to organize and utilize these contents effectively to improve the retrieval performance is a valuable research topic. In this paper, a method of measuring the complementarities between two feature spaces is proposed, based on which the fusion feature set can be selected effectually, and the experimental results are positive. At the same time, a linear fusion method based on the average precision of features is proposed. Extensive comparisons against several methods, such as flat model and rank-based linear fusion are performed. Experiments are carried out on a large-size heterogeneous image collection consisting of 12000 images and the results demonstrate the effectiveness of the proposed method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1640-1646,共7页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目(2004CB318108) 国家自然科学基金项目(60223004 60321002 60303005) 教育部科学技术研究重点基金项目(104236)~~
关键词 基于内容的图像检索 特征融合 平均检索精度 content-based image retrieval(CBIR) feature fusion average retrieval precision
  • 相关文献

参考文献8

  • 1W. Niblack, et al. The QBIC project: Querying images by content using color, texture and shape. In: Proc. SPIE Storage and Retrieval for Image and Video Databases. San Jose, CA,USA: SPIE Press, 1993. 173~187.
  • 2J.R. Batch, C. Fuller, A. Gupta, et al. The virage image search engine: An open framework for image management. In:Proc. SPIE Storage and Retrieval for Image and Video Databases.San Jose, CA, USA: SPIE Press, 1996. 76~87.
  • 3J. Dowe. Content-based retrieval in multimedia imaging. In:Proc. SPIE Storage and Retrieval for Image and Video Databases.San Jose, CA, USA: SPIE Press, 1993. 164~167.
  • 4Y. Rui, T. S. Huang. Optimizing learning in image retrieval.In: Proc. of IEEE Int'l Conf. Computer Vision and Pattern Recognition. Oakland, CA, USA: IEEE Computer Society Press, 2000. 236~243.
  • 5Z. Su, H. J. Zhang, S. P. Ma. Using Bayesian classifier in relevant feedback of image retrieval. In: Proc. the 12th IEEE Int'l Conf. Tools with Artificial Intelligence. Oakland, CA,USA: IEEE Computer Society Press, 2000. 258~261.
  • 6Y. Rui, T. S. Huang, et al. A relevance feedback architecture in content-based multimedia information retrieval systems. In: Proc.IEEE Workshop on Content-based Access of Images and Video Libraries. Oakland, CA, USA: IEEE Computer Society Press,1997. 82~89.
  • 7W.Y. Liu, Z. Su, S. Li, et al. A performance evaluation protocol for content-based image retrieval algorithms/systems. In:CD-ROM of IEEE CVPR Workshop on Empirical Evaluation Methods in Computer Vision. Kauai, Hawaii, USA: IEEE Compater Society Press, 2001.
  • 8J.Z. Wang. Corel Image Galley. http:∥wang. ist. psu. edu,2000.

同被引文献53

  • 1蔡晨,李凡长.动态模糊决策树学习算法研究[J].计算机技术与发展,2007,17(7):73-76. 被引量:2
  • 2Qin Zengchang, Jonathan Lawry. Decision tree learning with fuzzy labels [J]. Information Science, 2005, 173 (2) : 255- 275
  • 3Breiman :, Friedman J H, Olshen R A, et al. Classification and Regression Trees [M]. New York: Chapman & Hall, 1984
  • 4Quinlan J R. Induction of decision tree [J]. Machine Learning, 1986, 1:81-106
  • 5Wang Xizhao, Chen Bin, Qian Guoliang, et al. On the optimization of fuzzy decision trees [J]. Fuzzy Sets and Systems, 2000, 112(1): 117-125
  • 6Umanol M, Okamoto H, Hatono I, et al. Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems [C]//Proc of the 3rd IEEE Conf on Computational Intelligence. Piscataway, NJ: IEEE, 19941 2113-2118
  • 7Sugeno M. Fuzzy measures and fuzzy integrals: A survey [M]//Fuzzy Automata and Decision Processes. Amsterdam: North-Holland, 1977:89-102
  • 8Marichal, Jean-Luc. On Sugeno integral as an aggregation function[J]. Fuzzy Sets and Systems, 2000, 114(3): 347- 365
  • 9Murofushi T, Sugeno M. An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2): 201- 227
  • 10Ralescu D, Adams G. The fuzzy integrals [J]. Journal of Mathematics Analysis, 1980, 75:562-575

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部