期刊文献+

典型相关分析的理论及其在特征融合中的应用 被引量:89

The Theory of Canonical Correlation Analysis and Its Application to Feature Fusion
下载PDF
导出
摘要 利用典型相关分析的思想,提出了一种基于特征级融合的组合特征抽取新方法.首先,探讨了将典型分析用于模式识别的理论构架,给出了其合理的描述.即先抽取同一模式的两组特征矢量,建立描述两组特征矢量之间相关性的判据准则函数,然后依此准则求取两组典型投影矢量集,通过给定的特征融合策略抽取组合的典型相关特征并用于分类.其次,解决了当两组特征矢量构成的总体协方差矩阵奇异时,典型投影矢量集的求解问题,使之适合于高维小样本的情形,推广了典型相关分析的适用范围.最后,从理论上进一步剖析了该方法之所以能有效地用于识别的内在本质.该方法巧妙地将两组特征矢量之间的相关性特征作为有效判别信息,既达到了信息融合之目的,又消除了特征之间的信息冗余,为两组特征融合用于分类识别提出了新的思路.在肯考迪亚大学CENPARMI手写体阿拉伯数字数据库和FERET人脸图像数据库上的实验结果证实了该方法的有效性和稳定性,而且识别结果优于已有的特征融合方法及基于单一特征进行识别的方法. In this paper, based on feature fusion, a new method of feature extraction is proposed according to the idea of canonical correlation analysis. At first, the framework of canonical correlation analysis(CCA) used in pattern recognition is discussed and its reasonable description is given. This comprises three steps: extracting two sets of feature vectors with the same pattern and establishing the correlation criterion function between the two sets of feature vectors; solving the two sets canonical projective vectors and extracting their canonical correlation features by the CCA algorithm; doing feature fusion for classification by using proposed strategy. Then, the problem of canonical projection vectors is solved when two covariance matrices of training samples are singular. This method is adapted to small sample size and high-dimensional problems, so the applicable range of CCA is extended in theory. At last, the inherent essence of this method used in recognition is analyzed further in theory. The proposed method uses correlation features of two groups of feature vectors as effective discriminant information, so it not only is suitable for information fusion, but also eliminates the redundant information within the features. This is a new way to classification and recognition. The experiment results on the CENPARMI handwritten Arabic numerals database of Concordia University and FERET face image database show that recognition rate is far higher than that of the algorithm adopting the single feature or the existing fusion algorithm, and that this algorithm is efficient and robust.
出处 《计算机学报》 EI CSCD 北大核心 2005年第9期1524-1533,共10页 Chinese Journal of Computers
基金 香港特区政府研究资助局(CUHK/4185/00E)资助
关键词 典型相关分析 特征融合 特征抽取 手写体字符识别 人脸识别 canonical correlation analysis feature fusion feature extraction handwritten character recognition face recognition
  • 相关文献

参考文献18

  • 1Huang Y.S., Suen C.Y.. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 7(1): 90~94.
  • 2Constantinidis A.S., Fairhurst M.C., Rahman A.F.R.. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognition, 2001, 34(8): 1528~1537.
  • 3Jing X.Y., Zhang D., Yang Z.Y.. Face recognition based on a group decision-making combination approach. Pattern Recognition, 2003, 36(7): 1675~1678.
  • 4Liu C.J., Wechsler H.. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608.
  • 5Yang J., Yang J.Y.. Generalized K-L transform based combined feature extraction. Pattern Recognition, 2002, 35 (1): 295~297.
  • 6Yang J., Yang J.Y., Zhang D., Lu J.F.. Feature fusion: Parallel strategy vs. serial strategy. Pattern Recognition, 2003, 36 (6) : 1369~1381.
  • 7张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 8Borga M.. Learning multidimensional signal processing. Department of Electrical Engineering[Ph.D. dissertation]. Linkping University, Linkping, Sweden, 1998.
  • 9Yu S.J.. Direct blind channel equalization via the programmable canonical correlation analysis. Signal Processing, 2001, 81(8): 1715~1724.
  • 10Choi H.C., King R.W.. Speaker adaptation through spectral transformation for HMM based speech recognition. In: Proceedings of the IEEE International Symposium on Speech, Image Processing and Neural Networks, Hong Kong, 1994, 2: 686~689.

二级参考文献4

  • 1Lee Seong Whan,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,6期,648页
  • 2Liao Simon,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,3期,254页
  • 3Trier Oivind,Pattern Recognition,1996年,29卷,4期,641页
  • 4Mor Shunjl,IEEE Proc,1992年,80卷,7期,1029页

共引文献73

同被引文献846

引证文献89

二级引证文献337

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部