期刊文献+

基于粗集理论的新决策树剪枝方法 被引量:5

A new decision tree pruning method based on RST
下载PDF
导出
摘要 提出了一种基于粗糙集理论的新决策树剪枝方法.在剪枝的过程中,不仅考虑了树的分类精度,而且还考虑了生成树的深度对剪枝的影响;最后针对具体的数据集对新方法进行了验证,得到了较好的效果. Pruning decision tree is an effective way to avoid the phenomena of overfitting. This paper gives a new decision tree pruning method based on Rough Set Theory(RST), which holds that the complexity of the decision tree should also be regarded besides the classification accuracy of the tree in the process of pruning decision tree. It takes into account not only the classification accuracy of the tree but also the depth of the tree. Finally, a data set is given to validate the new method which has shown good performance.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期28-32,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 吉林省科技发展计划项目(20040529) 东北师范大学青年基金资助项目(111420000)
关键词 过匹配 剪枝 深度拟合率 错误率 overfitting pruning depth - fitting ratio error ratio
  • 相关文献

参考文献18

二级参考文献19

  • 1[2]Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[A].Peter Buneman,Sushil Jjodia.Proc 1993 ACM SIGMOD Conference on management of data[C].Washington:Washington D C.1993.207~216.
  • 2Friedman N,Geiger D,Goldszmidt M.Bayesian network classifiers [J].Machine Learning,1997,29:131~161.
  • 3Lam W,Bacchus F.Learning Bayesian belief networks:an approach based on the MDL principle [J].Computational Intelligence,1994,10:269~293.
  • 4Cheng Jie,Bell D,Liu Wei-ru.Learning Bayesian networks from data:an efficient approach based on information-theory [J].Artificial Intelligence,2002,137(1,2):43~90.
  • 5Pearl J.Probabilistic reasoning in intelligent systems:networks of plausible inference[M].San Mateo CA:Morgan Kaufmann,1988.117~133.
  • 6Chickering D M.Learning equivalence classes of Bayesian network structures [J].Machine Learning,2002,2:445~498.
  • 7王珏.Rough Set约简与数据浓缩[J].高技术通讯,1997,7(11):40-45. 被引量:39
  • 8王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239
  • 9苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507
  • 10王清毅,张波,蔡庆生.目前数据挖掘算法的评价[J].小型微型计算机系统,2000,21(1):75-78. 被引量:21

共引文献53

同被引文献33

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部