期刊文献+

硅基二维光子晶体耦合器理论研究 被引量:9

Theoretical Study of Silicon-Based Two-Dimensional Photonic Crystal Coupler
原文传递
导出
摘要 光子晶体是一种具有光子带隙的新型人工材料,利用其具有控制和限制光子运动的特性可以制成新颖的光学器件。利用硅基二维光子晶体,提出了一种4端口耦合器。采用时域有限差分法作为研究工具,TM模作为研究对象,从理论上分析了这种器件的特性。在不同的耦合长度下研究光在输出端的功率透射率,结果表明选择适当的耦合长度可以使光在器件中呈现不同的状态。进一步研究表明,通过改变器件内部介质柱的半径,可以改变光在输出端的输出功率。从而证实了这种器件不仅具有波长选择性,而且具有潜在的可调节性,这些特性使得这种器件在全光开关的应用上具有潜在的优势。 Photonic crystal is a new artificial material. Its unique optical properties enable it to be used in fabricating novel optical devices. In this work, a 4-port coupler is proposed theoretically in silicon based on twodimensional silicon photonic crystals, The optical properties of the 4-port coupler device have been demonstrated for TM polarization by finite-difference time-domain method. Transmittivity in each output port of the device is given as a function of coupling length. Results show that propagation direction of the input light beam can be controlled by changing coupling length of the device. Further studies indicate that the output optical power in each output port of the device can be tuned by reducing the radii of the silicon rods in the photonic crystals. The properties make the device find its potential applications in all-optical switching systems with wavelength-selective and tunable properties.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第9期1157-1160,共4页 Acta Optica Sinica
基金 国家自然科学基金重大研究计划基金(90401008) 教育部科学技术研究重点项目(104144) 高等学校博士学科点专项科研基金(20040558009) 广东省科技计划重大专项基金(2003A106020) 广州市科技计划项目--纳米专项(2004Z3-D2051)资助课题
关键词 导波与光纤光学 光子晶体 耦合器 时域有限差分法 透射率 guided wave and fiber optics photonic crystal coupler finite-difference time-domain transmission
  • 相关文献

参考文献16

  • 1Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.
  • 2Sajeev John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett. , 1987, 58 (23) :2486-2489.
  • 3Attila Mekis, J. C. Chen, I. Kurland et al.. High transmission through sharp bends in photonic crystal waveguides[J]. Phys. Rev. Lett., 1996, 77(18): 3787-3790.
  • 4Mehmet Bayindir, B. Temelkuran, E. Ozbay. Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals[J]. Phys. Rev. (B), 2000, 61(18): R11855-R11858.
  • 5Marko Loncar, Dusan Nedeljkovic, Theodor Doll et al..Waveguiding in planar photonic crystals[J]. Appl. Phys. Lett. ,2000, 77(13): 1937-1939.
  • 6宋俊峰,常玉春,王海嵩,许武,王立军,杜国同.光子晶体光波导传输特性研究[J].中国激光,2002,29(8):711-713. 被引量:15
  • 7Jun Yonekura, Mitsutaka Ikeda, Toshihiko Baba. Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method[J]. J. Lightwave Technol. , 1999,17(8): 1500- 1508.
  • 8Mehmet Bayindir, B. Temelkuran, E. Ozbay. Photonic crystal based beam splitters[J]. Appl. Phys. Lett., 2000, 77(24): 3902-3904.
  • 9Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos. Channel drop tunneling through localized states[J]. Appl. Phys.Lett., 1998, 80(5): 960-963.
  • 10Hitomichi Takano, Yoshihiro Akahane, Takashi Asano et al..In-plane-type channel drop filter in a two-dimensional photonic crystal slab[J]. Appl. Phys. Lett. , 2004, 84(13): 2226-2228.

二级参考文献16

  • 1金崇君,秦柏,杨森,秦汝虎.三角形复式晶格的光子带结构研究[J].光学学报,1997,17(4):409-413. 被引量:24
  • 2Steel M J, Osgood R M. Polarization and dispersive properties of elliptical-hole pbotonic crystal fibers. J.Lightwave Technol. , 2001, 19(4):495-503.
  • 3Eggleton B J, Westbrook P S, White C Act al.. Cladding-mode-resonances in air-silica microstructure optical fiber.J. Lightwave Technol. , 2000, 18(8):1085-1099.
  • 4Ferrando A, Silvestre E, Miret J Jet al.. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett. ,1999, 24(5) :276-278.
  • 5Mogilevtsev D, Birks T A, Russell P S J. Group-velocity dispersion in photonic crystal fibers. Opt. Lett., 1998, 23(21) :1662-1664.
  • 6Knight J C, Birks T A, Russell P S J a al.. Properties of photonic crystal fiber and the effective index model. J.Opt. Soc. Am. (A), 1998, 15(3) :748-752.
  • 7Ouzounov D, Homoelle D, Zipfel Wet al.. Dispersion measurements of microstructured fibers using femtosecond laser pulses. Opt. Commun. , 2001, 192(1) :219-223.
  • 8Cregan R F, Mangan B J, Knight J C et al.. Single mode photonic band gap guidance of light in air. Science, 1999, 285(5433) : 1537- 1539.
  • 9E. R. Brown,C. D. Parker,E. Yablonovitch.Radiation properties if a planar antenna on a photonic-crystal substrate[].Journal of the Optical Society of America.1993
  • 10O. Painter,R. K. Lee,A. Scherer et al.Twodimensional photonic band-gap defect mode laser[].Science.1999

共引文献41

同被引文献122

引证文献9

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部