摘要
In this paper, using the MSISE-90 model as the reference atmosphere, we discuss the feasibility and method of deducing the peak densities of the undisturbed atomic oxygen profiles in the MLT region (the mesosphere and lower thermosphere region) from OI (557.7 nm) night airglow intersities. The peak densities for different seasons, latitudes and longitudes are deduced from OI (557.7nm) airglow intensities through this expression. We analyze the features of inversion relative errors and discuss the influence of the variations in temperature on inversion errors. The results indicate that all inversion errors are less than 5% except for those at high altitudes in the summer hemisphere. And the impact of the variations in temperature on errors is not significant.
In this paper, using the MSISE-90 model as the reference atmosphere, we discuss the feasibility and method of deducing the peak densities of the undisturbed atomic oxygen profiles in the MLT region (the mesosphere and lower thermosphere region) from OI (557.7 nm) night airglow intersities. The peak densities for different seasons, latitudes and longitudes are deduced from OI (557.7 nm) airglow intensities through this expression, We analyze the features of inversion relative errors and discuss the influence of the variations in temperature on inversion errors. The results indicate that all inversion errors are less than 5% except for those at high altitudes in the summer hemisphere. And the impact of the variations in temperature on errors is not significant.
出处
《空间科学学报》
CAS
CSCD
北大核心
2005年第5期484-489,共6页
Chinese Journal of Space Science
基金
Supported by the National Science Foundation of China (40225011, 40336054)National Research Project (G2000078407)project of CAS (KZCX3-SW-217)International Collaboration Research Team Program of the Chinese Academy of Sciencesthe China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
关键词
原子
氧
MLT
气辉
天文
OI (557.7nm) airglow intensity, Mesopause, Atomic oxygen distribution, Peak density