期刊文献+

Level Set方法求解机器人路径规划的探讨 被引量:2

The Solution for Robot Path Planning Based on Level Set Method
下载PDF
导出
摘要 移动机器人路径规划是机器人学的一个最基本也是最复杂的问题,路径规划的主要方法有势能方法、单元分解方法、神经网络(NN)等。水平集(level set)方法已经广泛应用于图像处理和计算机图形学领域,因为其具有能够处理拓扑改变、数值稳定性好和独立于参数化的优势。为了探讨Level set方法在求解机器人路径规划中的应用,在介绍水平集法的基本思想和相关技术,以及路径规划的求解方法等的基础上,引入路径规划问题的隐式主动轮廊模型,即水平集模型,并采用快速推进方法(FMM)求解此模型方程,进而给出了路径规划模型的计算结果及其可视化界面,并且与经典势能法的计算结果进行了比较。理论和计算结果证明,Level set方法求解机器人路径规划是可行和有效的,从而为机器人路径规划研究提供了新的思路和方法。 Path Planning for mobile robots is one of the most fundamental and complex problem in robotics. Main solution methods for path planning mainly include potential field ,unit decomposing and neural network methods. Level set methods have been used in a variety of image processing and computer vision tasks with many advantages such as handling of topological changes, numerical stability and independence of paramerization. In order to exploit the application of Level set method in robot path planning problem. Based on introduction of the basic principle, some relative technology of level set method, and solution methods for path planning, implicit Snake or level set model for path planning problems is presented, and fast marching method( FMM ) is used to solve this kind of model. Some computation results and their visualization interfaces for this model are given, and compared to the results from classical potential energy methods. Theory and computation results prove that Level set method for robot path planning is feasible and valid , then new technology and method are provide for robot path planning research.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第9期1139-1145,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60072034) 留学回国人员资助资金项目(k206001) 南京市人事局基金项目(AD06003)
关键词 LEVEL SET方法 路径规划 机器人视觉 主动轮廓 Level set method, path planning, robot vision, Snake
  • 相关文献

参考文献12

  • 1Mitchell J S B, Payton D, Keirsey D. Planning and reasoning for autonomous vehicle control [ J ]. International Journal Intelligent Systems, 1987,2( 1 ) : 129 - 138.
  • 2Ron Kimmel, Arnon Amir, Bruckstein M. Finding shortest paths on surfaces using Level Sets propagation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(6) : 635 -640.
  • 3Ron Kimmel, Nahum Kiryati, Bruekstein Alfred M. Multivalued distance maps for motion planning on surfaces with moving obstacles[ J ]. IEEE Transactions on Robotics and Automation, 1998,14 (3) :427 - 435.
  • 4Koren K, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation [ A ]. In : Proceedings of the IEEE Conference on Robotics and Automation [ C ], Sacramento,California, USA, 1991 : 1398 - 1404.
  • 5Suri J S. Leaking prevention in fast Level Sets using fuzzy models: an application in MR brain [ A ]. In: International Conference in Information Technology in Biomedicine(ITAB-ITIS) [ C ], Arlington,VA, USA, 2000:220-226.
  • 6Osher S, Shu C W. High-order essentially nonoscillatory schemes for Hamilton-Jaeobi equation [ J ]. Society for Industrial and Applied Mathemation Journal Numerieal Analysis, 1991,28(4) : 907 - 922.
  • 7Osher S J, Rudin L I. Feature-oriented image enhancement using shock filters[J]. SIAM Journal Numerical Analysis, 1990,27(4):910 - 940.
  • 8Osher S J ,Sethian J A. Fronts propagating with curvature dependen speed: algorithms based on Hamilton-Jacobi formulation [ J ].Computation Physics, 1988,79( 1 ) :12 - 49.
  • 9Whitaker Ross T. A Level-Set approach to 3D reconstruction from range data[J]. Computer Vision, 1998,29(3 ) : 203 - 231.
  • 10Sethian J A. A fast marching Level Set method for monotonically advancing fronts [ J ]. Proceedings of National Academy Science,1996,93(4) : 1591 - 1595.

同被引文献19

  • 1崔荣鑫,徐德民,严卫生.一种自主水下航行器路径规划算法[J].系统仿真学报,2006,18(12):3373-3376. 被引量:7
  • 2刘利强,戴运桃,王丽华,甘兴利.基于蚁群算法的水下潜器全局路径规划技术研究[J].系统仿真学报,2007,19(18):4174-4177. 被引量:15
  • 3Willms A R,Yang S X. An efficient dynamic system for realtime robot-path planning[J].IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics,2006,(04):755-766.
  • 4Zhang Y,Zhang L,Zhang X H. Mobile robot path planning base on the hybrid genetic algorithm in unknown environment[A].China:Taiwan,2008.661-665.
  • 5Hassanzadeh I,Madani K,Badamchizadeh M A. Mobile robot path planning based on shuffled frog leaping optimization algorithm[A].Canada:Ontario,2010.680-685.
  • 6Guo J M,Liu L,Liu Q. An improvement of D* algorithm for mobile robot path planning in partial unknown environment[A].China:Hunan,2009.394-397.
  • 7Kimmel R,Amir A,Bruckstein A M. Finding shortest paths on surfaces using Level Sets propagation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(06):635-640.
  • 8Xu B,Stilwell D J,Kurdila A. Efficient computation of Level Sets for path planning[A].USA:Louis,2009.4414-4419.
  • 9Philippsen R,Siegwart R. An interpolated dynamic navigation function[A].Spain:Barcelona,2005.3782-3789.
  • 10Scheding S,Dissanayake G,Nebot E M. An experiment in autonomous navigation of an underground mining vehicle[J].{H}IEEE Transactions on Robotics and Automation,1999,(01):85-95.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部