期刊文献+

基于对象识别和分割的图像噪声抑制 被引量:1

Image noise reduction method based on object recognizing and segmentation
下载PDF
导出
摘要 在医学图像降噪中,不损失图像细节是至关重要的。传统的方法是直接对整个图像进行滤波处理。然而这种操作在减少噪声的同时也会破坏图像的细节。因此,关键的问题就是怎样在保持图像细节的同时能够减少噪声。为了解决上面提到的问题,在这篇论文中提出了一种模拟生物视觉的图像处理方法,首先提取图像的边缘信息,将图像分割成边缘区域和非边缘区域,然后对这两个区域采取不同的滤波降噪,再进行重新合成。与传统方法相比,本方法在保存图像细节上有一定的效果。 In the processing of noise reduction of medical image, the most important thing is to protect the detail information of the image. Usually, people perform a filtering computation on global of the image space, which although reduced the noise somewhat, but damaged the detail information at its edge. Therefore, the key is how to keep the detail information of the image in the processing of the noise reduction. In this paper, we introduced a method to solve the problem. This method simulates the processing of human vision. First, we extract the edge information from the image, and segment the image into the edge area and the non-edge area. Then, the different filtering computation on these two parts was carried out. At last, one can reconstruct the image from these two filtered parts of the image. Compared with the traditional method, this method makes the progress in keeping the detail information of the image.
出处 《中国医学影像技术》 CSCD 北大核心 2005年第9期1442-1445,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(10275003) 教育部重点项目(104237) 北京市共建项目(SYS100010401)资助。
关键词 图像降噪 图像分割 边缘检测 滤波 Image noise reduction: Image segmentation Edge detection Filtering
  • 相关文献

参考文献11

  • 1张毓晋.图像分割[M].北京:科学出版社,2001..
  • 2罗渝兰,王景熙,郑昌琼.图像分割在生物医学工程中的应用[J].计算机应用,2002,22(8):20-22. 被引量:23
  • 3Marr D. Vision[M]. USA: Freeman Publishers. 1982.
  • 4John C. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6) :679-698.
  • 5Lim JS. Two-dimensional signal and image processing[M] . Englewood Cliffs, NJ: Prentice Hall, 1990. 478-488.
  • 6Parker JR. Algorithms for image processing and computer vision[M]. New York: John Wiley & Sons, Inc, 1997.23-29.
  • 7Stephane Mallat, Sifen Zhong. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(7): 710-732.
  • 8Pham DL, Xu C, Prince JL. A survey of current methods in medical image segmentation[R]. Baltimore: Department of Electrical and Computer Engineering, John Hopkins University, 1999.
  • 9Toriwaki J, Mori K. Recent progress in medical image processing-virtualized human body and computer-aided surgery[J]. IEICE Transactions on Information and Systems, 1999, E82-D(3): 611- 628.
  • 10Walter SK. Textural segmentation of medical images [J]. SPIE Medical Imaging Ⅵ: Image Processing, 1992,9:143-144.

二级参考文献11

  • 1James S. Duncan, Nicholas Ayache. Medical image analysis: progress over two decades and the challenges ahead[J]. IEEE Trans. Patt. Anal. Mach. Intel., 2000,22 (1):85-106.
  • 2M. Kass, A.P. Witkin, D. Terzopoulos. Snakes: Active contourmodels[J]. International Journal on Computer Vision, 1988,1:321-331.
  • 3Kenneth R. Castleman. Digital Image Processing[M]. Prince Hall, 1996.
  • 4D. L. Pham, C. Y. Xu, J. L. Prince. A survey of current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2000,2:315.
  • 5J. K. Udupa, S. Samarasekera. Fuzzy connectedness and objectdefinition: Theory, Algorithms and application in image segmentation[J]. Graph. Med. Im. Proc., 1996,58(3):246-261.
  • 6J. C. Bezdek, L. O. Hall, L. P. Clarke. Review of MR imagesegmentation techniques using pattern recognition Med. Phys., 1993,20(4):1033-1048.
  • 7Chenyang Xu, Jerry L. Prince. Snakes, shapes, and gradient vector flow[J]. IEEE Trans. Image Processing, 1998,7:359-369.
  • 8张毓晋.图像分割[M].北京:科学出版社,2001..
  • 9何艳阳,王景熙,罗渝兰,屈冰.生物仿真神经网络图像分割方法中的参数自动确定[J].四川师范大学学报(自然科学版),2001,24(2):213-215. 被引量:2
  • 10陈冠饶,王景熙,郑昌琼,王章伟,ZHENG Yi.一种基于生物仿真结构的神经网络在超声医学图像分割中的应用[J].四川大学学报(工程科学版),2001,33(3):113-116. 被引量:6

共引文献37

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部