期刊文献+

一种实用车牌定位算法及实现 被引量:8

Utilitarian Locating Plates Algorithm Designation
下载PDF
导出
摘要 提出了结合空域拓扑结构和频域特征的车牌定位实用算法。在空域上,首先对原始照片进行预处理,包括灰度拉伸处理从而均衡光照影响,有利于增强算法的鲁棒性;然后对前面处理结果进行形态学梯度变换从而加强车牌文字区域的线状结构,有利于突出文字的频率特征。在频域上,利用车牌文字的横向频率特征,按照一定稠密度条件筛选水平象素,得到若干相对稠密的水平点集。接着在空域上对频域处理结果进行几何归并、拓扑筛选。最后利用车牌本身特点提出以一种快速倾斜纠正方法,并经过投影过滤,从而实现车牌区域快速准确定位。 A utilitarian locating plate method is presented, in which frequency and space topological characteristics about Plate area are considered, Firstly, origin image was processed by gray expanding so that the effects of lighting was averaged and the algorithm was more robust; and the result was handled by morphology gradient operator so that linear shapes of plate area and frequency characteristics of plate were highlighted. Then frequency operator was defined according to havezening frequency characteristics of plate, and some valuable horizontal sets were produced. Thirdly, the horizontal sets were combined geometrically and filtered by geometrical topological. Finally, the slope candidate rectangles patches were corrected and projected vertically. As a result, the correct position of plate comes out efficiently.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第10期2349-2351,2357,共4页 Journal of System Simulation
关键词 车牌定位 拓扑结构 灰度拉伸 形态学 垂直投影 License Plate topological structure gray expanding morphology vertical projection
  • 相关文献

参考文献7

  • 1Jean S R. Introduction to mathematical morthology [J]. Computer Vision, Graphics, and Image Processing, 1986, 5(2): 4357-4366.
  • 2章锍晋.图像分割[M].北京:科学出版社,2000.112-131.
  • 3Sezan M I. Peak detection algorithm and its application to histogram-based image data reeduction [J]. Computer Vision Graphics Image Processing, 1990, 49(1): 36-51.
  • 4Ostu N A. Threshold selection method from gray-level histogram [J].IEEE Transaction on System, Man and Cybernetics, 1997, 9(1): 62-66.
  • 5左奇,史忠科.一种基于数学形态学的实时车牌图象分割方法[J].中国图象图形学报(A辑),2003,8(3):281-285. 被引量:77
  • 6RobertDunlop DaleShepherd MarkMartin.DirectX 7.教程[M].北京:机械工业出版社,2001..
  • 7孔锐,施泽生,郭立,张国宣.基于全局特征和局部特征组合的脸谱识别方法[J].系统仿真学报,2004,16(5):1077-1080. 被引量:2

二级参考文献19

  • 1Bartlett M S. Face Image Analysis by Unsupervised Learning and Redundancy Reduction[D]. Ph D dissertation,University of California San Diego and the Salk Institute, La Jolla, CA 92037, 1998.
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 3Scholkopf B,Burges C J C, Smola A. J Advances in Kernel Methods-Support Vector Learning[M]. Cambridge,MA:MIT Press,1999.
  • 4Turk M, Pentland. A Face Recognition Using Eigenfaces[J]. Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 1991, 586-591.
  • 5Bell A J, Sejnowski T J. The Independent Components of Natural Scenes are edge filters[J]. Vision research, 1997, 37(23): 3327-3338.
  • 6Scholkopf B, Smola A J, Muller K. Non-linear component analysis as a kernel eigenvalue problem[J]. Neural Network, 1998, 10: 1299-1319.
  • 7Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.
  • 8Platt J. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods-Support Vector Learning, Scholkopf B, Burges C J C, and Smola A J, Eds[M]. Cambridge, MA: MIT Press, 1999: 185-208.
  • 9Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B.An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
  • 10林纯青,徐立亚,戚飞虎.汽车图象中字符目标的提取算法[J].上海交通大学学报,1998,32(10):1-3. 被引量:28

共引文献77

同被引文献59

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部