期刊文献+

基于不同复小波变换方法的纹理检索和相似计算 被引量:11

Different Complex Wavelet Transforms for Texture Retrieval and Similarity Measur e
下载PDF
导出
摘要 复小波克服了单小波的缺点,具有时移不变性、方向性信息多和相位信息等特点·从能量角度出发,主要研究了不同复小波变换方法的一阶和二阶统计矩(共生矩阵)特性,并应用于纹理特征的提取,与传统的单小波做了比较·通过理论分析和在纹理图像检索的对比实验数据说明了复小波在纹理特征提取方面的性能优于单小波,采用一阶和二阶统计矩相结合方法的性能最好,检索精度提高了8%· Complex wavelet transform overcomes the drawbacks of discrete wavelet transform, such as shift sensitivity, poor directionality and lack of the phase information. In this paper, the performance of the first-order and the second-order (co-occurrence) statistical characters of the different complex wavelet transforms (CWT) is studied with the consideration of the wavelet energy, and applied to texture feature extraction. It is concluded that the performance of the CWT is better than the pyramid discrete wavelet decomposition transforms (PDWT) on the texture feature extraction through theory analysis and the contrast experiments results on the texture retrieval. Best performance is achieved by combining the first- order signatures with the second-order signatures and the performance of retrieval is raised 8 %.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第10期1746-1751,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60473034) 甘肃省自然科学基金项目(3ZS051-A25-047)
关键词 小波 复小波变换 纹理 纹理特征提取 纹理检索 wavelet complex wavelet transforms texture texture feature extraction texture retrieval
  • 相关文献

参考文献10

  • 1S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11(2): 674~693.
  • 2N. G. Kingsbury. Image processing with complex wavelet.http:∥www-sigproc. eng. cam. ac. uk/~ ngk/, 1999.
  • 3E.P. Simoncelli, W. T. Freeman, E. H. Adelson. Shiftable multiscale transforms. IEEE Trans. Inform. Theory, 1992, 38(3): 587~607.
  • 4R. van Spaendonck, R. G. Baraniuk. Directional scale analysis for seismic interpretation. The 69th Annual International Meeting: Society of Exploration Geophysicists, Houston, 1999.
  • 5R. L. C. van Spaendonck, F. M. Hindriks, F. C. A.Fernandes. Three-dimensional attributes for seismic interpretation. The 70th Annual International Metting: Society of Exploration Geophysicists, Calgary, 2000.
  • 6N.G. Kingsbury. Shift invariant prosperities of the dual-tree complex wavelet transform. IEEE Icassp' 99, Phoenix, AZ, 1999.
  • 7F.A. Fernandes, R. L. C. van Spaendonck. A new framework for complex wavelet transforms. IEEE Trans. Signal Processing,2003, 51(7): 1825~1835.
  • 8B.S. Manjunath, W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Machine Intell, 1996, 18(8): 837~842.
  • 9R.M. Haralick, K. Shanmugam, I. Dinstein. Texture features for image classification. IEEE Trans. System Man Cybernat,1973, 8(6): 610~621.
  • 10T. Chang, C. C. J. Kuo. Texture analysis and classification with tree-structure wavelet transform. IEEE Trans. Image Processing,1993, 4(2): 429~441.

同被引文献131

引证文献11

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部