期刊文献+

最大熵模型的树-栅格最优N解码算法 被引量:1

A Tree-Trellis N-Best Algorithm for Decoding in Maximum Entropy Models
下载PDF
导出
摘要 最大熵模型已被广泛应用于多种自然语言处理任务,但一些现有研究工作在解码算法上存在有待改进的地方。本文提出了一个最大熵模型的树-栅格最优N解码算法,并对算法性能进行了分析和比较。算法的另一优点在于可以在解码过程中检测并控制潜在的标注冲突。 Maximum entropy models have been widely adapted in various natural language processing tasks. But there are some deficiencies in the decoding algorithm used by many previous researches. A n-best tree trellis algorithm is proposed for decoding in maximum entropy models. The performance analysis and comparison with other decoding algorithms are also presented. Another advantage of our method is that the possible collision in action sequences can be detected and eliminated.
出处 《计算机科学》 CSCD 北大核心 2005年第10期167-169,共3页 Computer Science
基金 国家自然科学基金(编号60272088)
关键词 树-栅格算法 最大熵模型 解码 最大熵模型 解码算法 最优 栅格 自然语言处理 算法性能 Tree trellis algorithm, Maximum entropy models, Decoding
  • 相关文献

参考文献4

二级参考文献48

  • 1黄河燕,陈肇雄.基于多策略的交互式智能辅助翻译平台总体设计[J].计算机研究与发展,2004,41(7):1266-1272. 被引量:12
  • 2陈肇雄,高庆狮.智能化英汉机译系统IMT/EC[J].中国科学(A辑),1989,20(2):186-194. 被引量:16
  • 3[1]Erik F, Tjong Kim Sang,Buchholz S. Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of CoNLL2000 and LLL-2000, Lisbon, Portugal, 2000. 127~132
  • 4[2]Steven A. Parsing by Chunks. In: Berwick, Abney, Tenny eds. Principle-Based Parsing: Kluwer Academic Publishers,1991. 257~278
  • 5[5]Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1996
  • 6[6]Ratnaparkhi A. A simple introduction to maximum entropy models for natural language processing. Institute for Research in Cognitive Science, University of Pennsylvania : Technical Report 9708, 1997
  • 7[7]Berger A, Pietra S D, Pietra V D. A maximum entropy approach to natural language processing. Computational Linguistics, 1996,22(1):39~71
  • 8[8]Skut, Wojciech, Thorsten Brants. A maximum entropy partial parser for unrestricted text. In:Proceedings of the 6th Workshop on Very Large Corpora, Montreal, Canada, 1998. 143~151
  • 9[10]Abney S. Part-of-speech tagging and partial parsing. In:Church K, Young S, Bloothooft G eds. Corpus-Based Methods in Language and Speech, An ELSNET volume, Dordrecht:Kluwer Academic Publishers, 1996. 119~136
  • 10[11]Church K W. A stochastic parts program and noun phrase parser for unrestricted text. In:Proceedings of the 2nd Conference on Applied Natural Language Processing, Texas, USA, 1988.136~143

共引文献126

同被引文献8

  • 1PALMER D, DAY D S. A statistical profile of the named entity task [ C] / / Proc of the 5th Conference on Applied Natural Language Processing. Washington D C: [ s. n. ] , 1997: 191 -192.
  • 2VLACHOS A. Active learning with support vector machines [ D] .MS: University of Edinburgh, 2004: 12-14 .
  • 3BERGER A L, PIETRA S A D, DELLA-PIETRA V J. A maximum entropy approach to natural language processing[ J] . Computational Linguistics, 1996, 22 ( 1) : 39 - 71.
  • 4LEWIS D D, GALE W A. A sequential algorithm for training text classifiers[ C] / /Proc of the 17th ACM International Conference on Research and Development in Information Retrieval. 1994: 3-12.
  • 5PLATT J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods [ C] / /Advances in Large Margin Classifiers. 2000: 61- 74 .
  • 6VAPNIK V. The nature of statistical learning theory[ M] . New York: Springer, 1995.
  • 7JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[ C] / /Proc of the European Conference on Machine Learning. 1998: 137-142.
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部