摘要
结合有限谱QU ICK格式求解不可压缩粘性流问题。这一格式用于模拟不同攻角下的NACA 1200机翼绕流问题。利用体积力,提出了将流场速度从0加速到来流速度的方法。区别于传统的压力梯度为零的边界条件,推导出一个更精确的压力边界条件。为使速度散度保持为零,在泊松方程中给速度散度一个特殊的处理。这一成果说明了有限谱法不但具有很高的精度,而且能灵活地和其他格式一起构造出新的格式,从而成功地应用到复杂流场不可压缩流动的数值计算中。
Finite Spectral QUICK scheme is developed to calculate incompressible viscous flows. This scheme is used to simulate the flows around NACA1200 airfoil at different angles of attack. In terms of body forces, a method of accelerating the flow velocity from 0 to freestream velocity in proposed. In contract to the conventional boundary condition with zero pressure gradient, an accurate formula for boundary condition of pressure is derived. In order to keep the divergence special treatment of divergence term in Poisson finite spectral method possesses not only hi incompressible flow problems. eq gh uation is proposed. This accuracy but also high of velocity being zero, a application indicates that flexibility for complex incompressible flow problems.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2005年第5期518-523,共6页
Chinese Journal of Computational Mechanics
基金
国家杰出青年基金(19925208)资助项目
关键词
有限谱法
谱方法
不可压流
finite spectral method
spectral methods
incompressible flows