期刊文献+

融合两种运动信息的分级运动检测算法

A Hierarchical Motion Detection Algorithm with the Fusion of the Two Types of Motion Information
原文传递
导出
摘要 针对智能视频监控提出了一种融合两种运动信息的分级运动检测算法。算法分别在像素级、区域级和帧级进行处理。像素级处理中,运用了改进的基于混合高斯模型的背景相减法,并提出了一个能够及时适应背景快速变化的累积时间差分法,两种方法检测得到两种不同的运动信息,区域级处理融合了这两种运动信息,使算法既能适应背景的缓变,又能适应背景的快变,解决了背景物体运动的问题。帧级处理主要解决全局光照突然变化的问题。实验结果表明,这个算法能够实现稳健可靠的运动检测。 A hierarchical motion detection algorithm, which fuses two types of motion information, is presented in this paper to handle the slow or fast changes of the background and the global illumination changes. The algorithm consists of three distinct levels-pixel level, region level and frame level. At the pixel level, an improved MOG-based background subtraction is introduced to get the better adaptability to the slow change of background. A method of cumulate temporal differencing, which is adaptive to the fast change of the background, is proposed to serve as auxiliary information to improve the result of background subtraction. On the region level, the moving pixels are grouped to get moving region. Then the fusion of background subtraction and cumulate temporal differencing is performed to get real moving foreground. Region level processing provides the solution for the slow and fast changes of the dynamic environments. Finally frame level analysis is performed to detect the global illumination changes and re-initialize the background model or switch among the multi-background models. Results of experiments show the effectiveness and robustness of the algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第5期552-557,共6页 Pattern Recognition and Artificial Intelligence
关键词 智能视频监控 运动检测 背景模型 Intelligent Video Monitoring, Motion Detection, Background Model
  • 相关文献

参考文献11

  • 1McIvor A, Zang Q, Klette R. The Background Subtraction Problem for Video Surveillance Systems. Technical Report,CITR-TR-78, University of Auckland, Auckland, New Zealand, 2000.
  • 2Blake A, Isard M. Active Contours. Heidelberg, Germany:Springer-Verlag, 1998.
  • 3Beymer D, McLauchlan P, Coifman B, Malik J. A Real-Time Computer Vision System for Measuring Traffic Parameters. In:Proc of the IEEE Computer Society International Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997, 495-501.
  • 4Lipton A, Fujiyoshi H, Patil R. Moving Target Classification and Tracking from Real-Time Video. In.. Proc of the IEEE Workshop on Applications of Computer Vision. Princeton,USA, 1998, 8-14.
  • 5Wren C, Azarbayejani A, Darrel T, Pentland A. Pfinder: Real-Time Tracking of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 6Stauffer C, Grimson W E L. Learning Patterns of Acitivty Using Real-Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
  • 7Javed O, Shafique K, Shah M. A Hierarchical Approach to Robust Background Subtraction Using Color and Gradient Information. In: Proc of the IEEE Workshop on Motion and Video Computing. Orlando, USA, 2002, 22-27.
  • 8Toyama K, Brumitt B, Krumm J, Meyers B. Wallflower: Principles and Practice of Background Maintenance. In: Proc of International Conference on Computer Vision. Kerkyra, Greece,1999, 255-261.
  • 9Kumar P, Sengupta K, Lee A. A Comparative Study of Different Color Spaces for Foreground and Shadow Detection for Traffic Monitoring System. In: Proc of the IEEE 5th International Conference on Intelligent Transportation Systems. Singapore, Singapore, 2002, 100-105.
  • 10Collins R, Lipton A, et al. A System for Video Surveillance and Monitoring. Technical Report, CMU- RI- TR- 00-12, Robotics Institute, Carnegie Mellon University, Pittsburgh,USA, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部