期刊文献+

一种基于Hough变换的步态特征提取方法的研究 被引量:5

A Hough Transform Based Method for Gait Feature Extraction
下载PDF
导出
摘要 步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别。与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。提出了一种基于新的特征提取方法的自动步态识别算法,该算法仅从腿部的运动进行身份识别。对于每个序列,用一种基于图像色度偏差的背景减除算法来检测运动对象,在经过后处理的二值图像序列中利用边界跟踪算法获取对象边界。在对象边界图像上,局部应用Hough变换检测大腿和小腿的直线,从而得到大腿和小腿的倾斜角。用最小二乘法将一个周期内的倾斜角序列拟合成5阶多项式,把Fourier级数展开后得到的相位与振幅的乘积定义为低维步态特征向量。在小样本的数据库上用F isher线性分类器验证所研究算法的性能,正确分类率为79.17%。在步态数据库不很理想的情况下也获得了较好的识别率。 Gait is an emergent biometric aimed essentially to recognize people by the way they walk. Gait as a biometric can be seen as advantageous over other forms of biometric identification techniques, for it offers the possibility to identify people at a distance without any interaction or co-operation from the subject. This paper proposes a novel automatic gait recognition method, which extracts gait signature from legs of the subject. For each image sequence, background subtraction based on chromaticity distortion is used to segment moving objects. Boundary tracking algorithm is then used to find perimeter pixels in each processed binary image sequence. This paper makes use of Hough Transform to locally extract the lines which represent legs, and thus obtains inclination angles of upper legs and lower legs. The angles are then fitted to a fifth-order polynomial by least squares method. The polynomial curve is expressed by a Fourier series. The lower- dimensional gait signature vector, that is, the product of phase and magnitude, is derived from phase and magnitude spectra. Fisher Linear Classifier is used to validate the performance of the proposed algorithm on small database samples and the correct classification rate is 79.17%. The recognition rate is still good for these unideal outdoor image sequences.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第10期1304-1309,共6页 Journal of Image and Graphics
基金 北京市自然科学基金项目(4031004) 北京市教委科技发展计划项目(km200310005006)
关键词 步态识别 特征提取 背景减除 HOUGH变换 gait recognition, signature extraction, background subtraction, Hough transform
  • 相关文献

参考文献9

  • 1Dawson M R. Gait Recognition [ D ]. London, England: Department of Computing, Imperial College of Science, Technology &Medicine, 2002.
  • 2Johansson G. Visual motion perception [ J ]. Scientific American,1975,232(6) :76 ~ 88.
  • 3Huang P, Harris C, Nixon M. Human gait recognition in canonical space using temporal templates [ J ]. Vision Image and Signal Processing, 1999,146(2) :93 ~ 100.
  • 4James J L, Jeffrey E B. Recognizing people by their gait: the shape of motion[J]. Journal Videre, 1998,1(2): 1~32.
  • 5BenAbdelkader C, Cutler R, Davis L. Motion-based recognition of people in eigengait space[A]. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition [ C ],Washington, DC, USA, 2002:267 ~ 274.
  • 6BenAbdelkader C, Cutler R, Davis L. Stride and cadence as a biometric in automatic person identification and verification [ A ]. In:Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition[ C], Washington, DC, USA, 2002:372 ~377.
  • 7王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 8Horprasert T, Harwood D, Davis L S. A statistical approach for realtime robust background subtraction and shadow detection [ A ]. In:Proceedings of IEEE International Conference on Computer Vision,FRAME-RATE Workshop[ C ], Kerkyra, Greece, 1999:1 ~ 19.
  • 9Nixon M S, Carter J N, Nash J M, et al. Automatic gait recognition [ A]. In: Proceedings of the IEE Colloquium on Motion Analysis and Tracking[ C ], London, England, 1999:3/1 ~ 3/6.

二级参考文献21

  • 1Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recognition,2003,36(3):585~601
  • 2Phillips J, Moon H, Rizvi S, Rause P. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104
  • 3Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Society. Boston:Kluwer Academic Publishers, 1999
  • 4Nixon M, Carter J, Cunado D, Huang P, Stevenage S. Automatic gait recognition. In: Proceedings of BIOMETRICS Personal Identification in Networked Society, 1999. 231~249
  • 5Niyogi S, Adelson E. Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994. 469~474
  • 6Cunado D, Nixon M, Carter J. Using gait as a biometric, via phase-weighted magnitude spectra. In: Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication, Crans-Montana, Switzerland, 1997. 95~102
  • 7Little J, Boyd J. Recognizing people by their gait: The shape of motion. Journal of Computer Vision Research, 1998, 1 (2): 2~32
  • 8Murase H, Sakai R. Moving object recognition in eigenspace representation: Gait analysis and lip reading. Pattern Recognition Letters, 1996, 17: 155~162
  • 9Huang P, Harris C, Nixon M. Human gait recognition in canonical space using temporal templates. Vision Image and Signal Processing, 1999, 146 (2): 93~100
  • 10Shutler J, Nixon M, Harris C. Statistical gait recognition via temporal moments. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, Austin, Texas, 2000. 291~295

共引文献157

同被引文献41

  • 1蒋运辉,皮亦鸣.基于Hough变换和遗传算法的SAR图像道路检测[J].雷达科学与技术,2005,3(3):156-162. 被引量:4
  • 2耿磊,吴晓娟,张恒.基于踝关节轨迹的身份识别算法[J].电子技术应用,2006,32(5):42-44. 被引量:5
  • 3Cunado D, Nixon M, Carter J. Using gait as a biometfic, via phase - weighted magnitude spectra [ A ]. In : Proc International Conference on Audio and Video - based Biometric Person Authentication[ C ]. Switzerland : Crans - Montana , 1997 : 95 - 102.
  • 4Cunado D, Nixon M S, Carter J N. Using gait as a biometric, via phase weighted magnitude spectra [ A ] . In: Proceedings of 1st International Conference on Audio and Video Based Biometric Person Authentication[ C]. CransMontana, Switzerland 1997:95 - 102.
  • 5J - H. Yoo, M. Nixon, C. J. Harris. Extracting human gait gait signatures by body segment properties [ A ]. In: Proc. of IEEE Southwest Symposium on Image Analysis and Interpretation [ C ].2002:35 - 39.
  • 6Mowbray S. D, Nixon, M. S. Extraction and recognition of periodically deforming objects continuous, spatio - temporal shape description[ A]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C ]. Washington, 2004:326 - 338.
  • 7R. Tanawong suwan and A. Bobick. Gait recognition from time - normalized joint - angle trajectories in the walking plane[ A]. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[ C ]. Kauai, HI, USA, 2001, 2:726 -731.
  • 8Jamal H,Sami-ud-din,Habib H.A road boundary detection in night video sequence:A novel technique for autonomous vehicles[ A ].In:Proceedings of the 17th International Conference on Microelectronics (ICM2005)[C],Islamabad,Pakistan,2005:264-267.
  • 9Tsai Shang-Jeng,Sun Tsung-Ying.The robust and fast approach for vision-based shadowy road boundary detection[ A ].In:Proceedings of 8th International IEEE Conference on Intelligent Transportation Systems[ C],Vienna,Austrian,2005:688-693.
  • 10Wijesoma W S,Kodagoda K R S,Balasuriya Arjuna P.RoadBoundary detection and tracking using ladar sensing[ J ].IEEE Transactions on Robotics and Automation,2004,20(3):456-464.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部