期刊文献+

Lehtinen定理的另一证明 被引量:1

Another Proof of Lehtinen Theorem
下载PDF
导出
摘要 对于实轴上满足M条件的自同胚映射h(x),利用一系列积分不等式的精细估计,将相应问题转化为定义在一个凸五边形约束域G上伸张函数f(ξ,η)的估计式;然后根据f(ξ,η)的凸性和其在区域G 5个顶点上函数值的直接计算,从而得到了Beurling-A h lfors扩张映射φ(z)的伸张函数D的最优值估计:D≤2M.本文的证明不同于Lehtinen传统方法. Let h (x) be a homeomorphism of real axis R onto itself,which satisfies the M-conditions. In terms of relatively fine estimates of integral inequalities,this paper transforms the corresponding problems into the estimates of a dilation function f(ξ,η) defined on a region of convex pentagon. According to the convexity of f(ξ,η) and a direct computation of the values of f(ξ,η) at five vertexes of G,it is shown that dilatation function D(z) of Beurling-Ahlfors' extension mapping φ(z) of h(x) is of optimal estimates: D≤ 2M. This new method is different from Lehtinen's.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第10期1737-1740,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10271077) 浙江省教育厅自然科学基金(20030768)
关键词 Beurling—Ahlfors扩张 伸张函数 M条件 Beurling-Ahlfors extension dilatation function M-conditions
  • 相关文献

参考文献9

  • 1Ahlfors L V. Lectures on quasiconformal mappings [M], New York: Nostrand Company, 1966.
  • 2Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings [J]. Acta Math,1956,96:125-142.
  • 3Lehtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions[J]. Ann Acad Sci Fenn Ser AI Math,1983,8(1):187-191.
  • 4Li Zhong. The lower bound of the maximal dilatation of the Beurling-Ahlfors extension [J]. Ann Acad Sci Fenn Ser AI Math,1990,15:75-81.
  • 5Fang A N. Generalized Beurling-Ahlfors theorem[J].Science in China Ser A,1995,25(6):565-572.
  • 6Chen Z G. Estimates on u(z)-Homeomporphism of the unit disk[J]. Israel Journal of Math, 2001,22: 347-358.
  • 7Zheng S Z. Partial regularity for A-harmonic systems and quasiregular mappings [J]. Chinese Journal of Contemporary Mathematics, 1998,19 ( 1 ): 19- 30.
  • 8郑学良.Beurling-Ahlfors扩张的伸张函数与ID-同胚[J].数学学报(中文版),2002,45(5):1035-1040. 被引量:9
  • 9郑学良.Beurling-Ahlfors扩张的伸张函数增长阶的估值[J].上海交通大学学报,2003,37(11):1811-1813. 被引量:1

二级参考文献12

  • 1Ahlfors L. V., Lectures on Quasiconformal Mappings, New York: Nostrand Company, 1966.
  • 2Beurling A., Ahlfors L. V., The boundary correspondence under quasiconformal mappings, Acta. Math., 1956, 96: 125-142.
  • 3Chen Z. G., Boundary behavior of the dilatation of the Beurling-Ahlfors extension, Journal of Fudan Univer sity (Natural Science), 1996, 35(4): 381-386.
  • 4Fang A. N., Generalized Beurling-Ahlfors theorem, Science in China, Ser. A, 1995, 25(6): 565-572 (in Chinese).
  • 5Fang A. N., On the compactness of Homemorphisms with Integrable Dilatations, Acta Mathematica Sinica,1998, 41(3): 463-466 (in Chinese).
  • 6Lehtinen M., The dilatation of Beurling-Ahlfors extension of quasisymmetric functions, Ann. Acad. Sci.Fenn. Ser AI Math., 1983, 8(1): 187-191.
  • 7Zheng S. Z., Beltrami systems with Double characteristic Matrices and Quasiregular Mappings, Acta Math-ematica Sinica, 1997, 40(5): 745-750 (in Chinese).
  • 8Zheng S. Z., Partial regularity for A-harmonic systems and quasiregular mappings, Chinese Journal ofContemporary Mathematics, 1998, 19(1): 19-30.
  • 9Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings [ J]. Acta Math, 1956,96 : 125- 142.
  • 10Lebtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions [J]. Ann Acad Sci Fenn Ser AI Math,1983,8(1):187-191.

共引文献8

同被引文献6

  • 1利特温秋克ГС.带位移的奇异积分方程与边值问题[M].赵贞,译.北京:北京师范大学出版社,1982.
  • 2Litvinchuk G S.Sovability theory of boundary value problems and singular integral equations with shift[M].Dordrecht:Kluwer Academic Publishers,2000:46-121.
  • 3Alexander R I.The Riemann-Hilbert problem and integrable systems[J].Notices of the AMS,2003,50 (1):1389-1400.
  • 4Solomon G M,Siegfried P.Singular integral operators[M].Berlin:Springer-Verlag,1989:71-91.
  • 5陈传璋,侯宗义,例明忠.积分方程论及应用[M].上海:上海科学技术出版社,1987:12-59,177-247.
  • 6郑学良.一类微分积分方程的可解性[J].上海交通大学学报,2002,36(9):1373-1376. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部