期刊文献+

基于Boosting的模糊分类规则集成学习及应用 被引量:3

Ensemble Learning and Application of Fuzzy Classification Rules Based on Boosting
下载PDF
导出
摘要 由于难于获得先验知识,样本可分性差,辐射源识别很难达到很高的识别率。结合AdaBoost算法和遗传算法,提出了一种模糊分类规则的迭代学习方法。在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类和拒识的样本。在规则学习的适应度函数中考虑训练实例的分布,使模糊分类规则在产生阶段就考虑相互之间的协作,改善了模糊分类规则的整体识别能力。辐射源识别实验结果表明,该方法具有良好的分类识别性能。 Because available knowledge is hard to obtain and the separability of instances is bad, the classification of Radiant Point has a low recognition rate. An iterative learning method of fuzzy classification rides is presented based on the combination of AdaBoost algorithm and Genetic algorithm. At each iteration training of AdaBoost algorithm, the distribution of training instances are adjusted on which classification rtdes are created by Genetic algorithm. The weights of the training instances that are classified correctly by available rules are reduced, so that the new fuzzy ride focuses on the misestimate or uncovered instances. Because the distribution of training instances are attached to computing of the fimess function and the collaboration of rtdes is taken into account during producing rtdes. The classification performance of the multiple classifiers ensemble based on the fuzzy rules is improved. In Radiant Point experiments, this algorithm shows good recognition rate.
作者 方敏 王宝树
出处 《宇航学报》 EI CAS CSCD 北大核心 2005年第5期640-643,675,共5页 Journal of Astronautics
基金 国防科技预研基金(413150801) 综合业务网国家重点实验室开放基金ISN6-7资助
关键词 模糊分类规则 ADABOOST算法 遗传算法 集成 Fuzzy classification rule AdaBoost algorithm Genetic algorithm Ensemble
  • 相关文献

参考文献8

  • 1Dasgupta D and Gonzá1ez F A. Evolving complex fuzzy classifier rules using a linear tree genetic. representation [ A ]. Proceedings of the Genetic and Evolutionary Computation Conference[ C ], 2001.
  • 2Jiang Y, Zhou Z H, Chen Z Q. Rule learning based on neural network ensemble [ A ]. Proceedings of the International Joint Conference on Neural Networks[C], 2002, (2): 1416 - 1420.
  • 3Freund Y, Schapire R E. Experiments with a new boosting algorithm[A]. Proceedings of the Thirteenth Internal Conference on Machine Learning[C], 1996, 148-156.
  • 4孟伟,王宝树,赵健.基于神经网络与主观Bayes理论的雷达识别研究[J].计算机工程,2002,28(7):156-158. 被引量:5
  • 5Gonzalez A and Herrera F. Multi-stage genetic fuzzy systems basod on the iterative rule learning approach[J]. Mathware & Soft Computing,1997, (4) :233 - 249.
  • 6Cordon O and Jesus del M J. Genetic learning of fuzzy classification systems cooperating with fuzzy reasoning methods [ J ]. International Journal of Intelligent Systems, Nov 1998,13( 10- 11 ): 1025- 1053.
  • 7Hoffmann F. Boostingagenetic fuzzyclassifier[A]. In Proc Joint 9th IFSA World Congress and 20th NAFIPS International Conference,Vancourer, Canada, July 2001: 1564- 1569.
  • 8Merz C J. Using correspondence analysis to combine classifiers [ J ].Machine Learning, 1999,36( 1 ~ 2) :33 - 58.

二级参考文献3

共引文献4

同被引文献41

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部