期刊文献+

集成式计算机芯片水冷系统的研究 被引量:23

Compositive Water-Cooling System Applied to Computer Chip
下载PDF
导出
摘要 为了实现计算机芯片散热静音、高效的目的,研制了一种新型的、以双腔并联压电泵为动力源的计算机芯片水冷散热系统,解释了双腔并联压电泵的结构及工作原理,应用流体动力学、传热学等理论阐明了水冷散热器的设计方法.采用有限元分析软件对散热器进行了热量分布仿真,通过实验的方式,测试了水冷系统内部流量及风扇对计算机芯片散热效果的影响规律.通过与现有芯片CPU Cooler系列风冷散热器的对比实验,发现该水冷系统的散热效率较高,在相同工况、加热功率60 W时,研制的集成式水冷系统所冷却的模拟芯片加热器的热平衡温度比CPU Cooler冷却时的温度低6℃,而到达热平衡的时间却缩短了35 min. To cool computer chip silently and efficiently, a new type of computer chip water-cooling system driven by piezoelectric pump with two parallel-connected chambers is fabricated, and the mechanism and structure of piezoelectric pump with two parallel-connected chambers are described. The designing method of water-cooling radiator is proposed based on the theory of fluid dynamics and heat transfer, and a finite element simulation of heat distribution is carried out. The influences of flowrate in the cooling system and fan are experimentally explicated, It is found that the compositive water-cooling system enables to shorten 35 rain to reach lower heater steady temperatures as 6℃ than the current wind-cooling radiator at 60 W heating power level.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第11期1207-1210,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2002AA404250)
关键词 计算机芯片 水冷 压电泵 散热器 computer chip water-cooling piezoelectric pump radiator
  • 相关文献

参考文献4

  • 1Zhang L. Phase change phenomena in silicon microchannels [J]. International Journal of Heat and Mass Transfer, 2005,48(8):1 572-1 582.
  • 2程光明 刘九龙 杨志刚.计算机芯片冷却方法的研究与进展[J].科学研究月刊,2004,9(1):36-38.
  • 3阚君武,杨志刚,程光明.压电泵的现状与发展[J].光学精密工程,2002,10(6):619-625. 被引量:58
  • 4曾平,程光明,刘九龙,孙晓锋,赵艳龙.双腔薄膜阀压电泵的实验研究[J].光学精密工程,2005,13(3):311-317. 被引量:16

二级参考文献51

  • 1Woias P. Micropumps-summarizing the first two decades [J].SPIE, 2001,4560: 39-52.
  • 2Spencer W J, Corbett W T, Dominguez L R, et al. An electronically controlled piezoelectric insulin pump and valves [J]. IEEE Trans. Sonics Ultrasonbics, 1978, SU-25(3): 153-156.
  • 3van Lintel H T G, van de Pol F C M,Bouwstra S. A piezoelectric micropump based on micromachining of silicon [J]. Sensors and Actuators, 1988,15:153-167.
  • 4Linnemann R, Woias P, Senff C D, et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases [A]. Proc. of the 11th IEEE MEMS 1998 Technical Digest[C]. Heidelberg, Germany, 25-29,1998: 532-537.
  • 5Mailefer D, van Lintel H, Mermet G R, et al. A High-performentce silicon micropump for an implantable drug delivery system [A]. Proc. of the 12th IEEE MEMS 1999 Technical Digest[C]. Orlando, Florida,USA, 1/17-21/99:541-546.
  • 6Shoji S, Nakagawa S, Esashi N. Micropump and sample-injector for integrated chemical analysis system [J]. Sensors and Actuators A, 1990,21-23:189-192.
  • 7Ederer I, Raetsch P, Schullerus W, et al. Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output [J]. Sensors and Actuators A, 1997, 62: 752-755.
  • 8Li H Q, Roberts D C, Steyn J L, et al. A high frequency high flow rate piezoelectrically driven MEMS micropump [A]. Proceeding IEEE Solid State Sensors and Actuators Workshop[C]. Hilton Head,2000.
  • 9Michael K, Nick H, Evans AL G R, et al. A novel micromachined pump based on thick-film piezoelectric actuation [J]. Sensors and Actuators A, 1998, 70: 98-103.
  • 10Nguyen N T, White R M. Design and optimization of an ultrasonic flexural plate wave micropump using simulation [J]. Sensors and Actuators, 1999, 77:229-236.

共引文献70

同被引文献265

引证文献23

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部