期刊文献+

Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm

Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm
下载PDF
导出
摘要 In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve. In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the Particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1026-1029,共4页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project(Nos.70471052and60174035)supportedbytheNationalNaturalScienceFoundationofChina
关键词 Particle Swarm Optimization (PSO) Cutting tool Parameter estimation Temperature nonlinear model 参数估计 切断工具 温度线性模型 非线性回归曲线 PSO算法
  • 相关文献

参考文献1

  • 1K.E. Parsopoulos,M.N. Vrahatis.Recent approaches to global optimization problems through Particle Swarm Optimization[J].Natural Computing (-).2002(2-3)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部