期刊文献+

Banach空间中非线性映射的一个局部性质

A Local Property of Nonlinear Mappings in Banach Spaces
下载PDF
导出
摘要 研究了Banach空间中非线性映射的局部线性化问题,在仅假设非线性映射的Fréchet导数存在有界广义逆的条件下,给出了非线性映射的一个局部性质,这个局部性质不仅统一了经典的局部浸没定理和局部浸入定理,而且推广了V.Cafagna的主要结果. This paper investigates the local conjugacy problem in Banach spaces. We provide a local property of nonlinear mappings under the assumption of its Frechet derivative having bounded generalized inverses. Our main results not only unify local immersion theorem and local submersion theorem, but also generalize the main results of V.Cafagna.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2005年第3期180-183,共4页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金资助项目(10271053)
关键词 广义逆 局部共轭 BANACH空间 generalized inverse local conjugacy Banach space
  • 相关文献

参考文献4

二级参考文献6

  • 1Jipu Ma.Rank theorems of operators between Banach spaces[J].Science in China Series A: Mathematics.2000(1)
  • 2Jipu Ma.Generalized indices of operators inB(H)[J].Science in China Series A: Mathematics.1997(12)
  • 3Ma Jipu.Dimension of subspaces in Helbert space and index of semi-Fredholm operators, Science in China, Ser[].A.1996
  • 4Jipu Ma.Local conjugacy theorem, rank theorems in advanced calculus and a generalized principle for constructing Banach manifolds[J].Science in China Series A: Mathematics.2000(12)
  • 5Jipu Ma.Rank theorems of operators between Banach spaces[J].Science in China Series A: Mathematics.2000(1)
  • 6马吉溥.CONTINUOUSLY SUFFICIENT AND NECESSARY CON-DITIONS FOR MOORE-PENROSE INVERSES A_x^(+*)[J].Science China Mathematics,1990,33(11):1294-1302. 被引量:8

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部