期刊文献+

成年大鼠脑损伤后神经前体细胞的增殖及迁移(英文) 被引量:1

Proliferation and migration in vivo of neural precursor cells in adult rat brain following fluid percussion injury
下载PDF
导出
摘要 背景:成年哺乳类动物中枢神经系统存有神经前体细胞,其基本生物学特性主要包括多向细胞分化和维持自身数量稳定。目的:观察中枢神经系统损伤后神经前体细胞增殖和迁移的反应过程,探讨神经前体细胞在中枢神经系统损伤修复中的作用,设计:随机对照实验。单位:北京市神经外科研究所病理生理研究室。材料:实验在北京市神经外科研究所病理生理研究室完成。选择成年Wistar大鼠67只,随机分为正常对照组7只,损伤后1,3,7,14,30d组,每个损伤组12只。以上每个损伤组再随机分为人工脑脊液组2只,碱性成纤维细胞生长因子组5只和神经营养因子-3组5只。方法:各损伤组制作液压冲击性脑损伤模型,正常对照组仅开颅,不致伤。各损伤组每次腹腔内注射BrdU50mg/kg,处死前2h注入最后一次,其中损伤后1d和3d组每天注入3次,损伤后7d和14d组每天注入1次。碱性成纤维细胞生长因子组每日灌注碱性成纤维细胞生长因子总量360ng,神经营养因子-3组每日灌注神经营养因子-3总量240ng,人工脑脊液组每日灌注液中不含碱性成纤维细胞生长因子和神经营养因子-3,灌注4μL。免疫组织化学方法动态检测各组大鼠脑组织中Nestin和BrdU的表达。BrdU标记方法确定增殖的神经前体细胞;Nestin的表达用于确定神经前体细胞。主要观察指标:Brdu,GFAP+/Brdu+和GFAP-/Brdu+在各组大鼠脑损伤不同时相中的表达。结果:67只大鼠均进入结果分析。①与正常对照组相比较,伤侧皮质、海马及室下区的Nestin阳性细胞数于伤后1d明显增多[(3.1±1.1),0个/视野;(5.5±0.9),(1.3±0.8)个/视野;(8.1±0.9),(2.3±0.8)个/视野,P<0.05],7d达高峰[(7.5±1.2),(10.2±1.5),(13.6±1.2)个/视野],30d消失[0,(1.2±0.9),(2.1±0.8)个/视野]。②伤侧皮质、海马及室下区的BrdU阳性细胞数于伤后3d达高峰[(12.6±1.5),(9.9±1.1),(13.4±1.0)个/视野],而7d以后逐渐减少。③室下区BrdU阳性细胞及Nestin阳性细胞经胼胝体向对侧迁移。结论:液压冲击性脑损伤可激发成年大鼠脑皮质、海马及室下区神经前体细胞增殖及迁移,其中Nestin阳性细胞数于伤后7d最多,BrdU阳性细胞数于伤后3d最多。 BACKGROUND: Neural precursor cells exist in the central nervous system (CNS) of adult mammals, characterized fundamentally by such biological properties of muhipotential differentiation and capability of maintaining their stable quantity. OBJECTIVE: To investigate the proliferation and migration of the neural precursor cells in adult rat brain following fluid percussion injury (FPI), and explore their role in the repair of CNS damage. DESIGN: Randomized controlled experiment. SETITNG: Laboratory of Pathophysiology, Beijing Institute of Neurosurgery. MATERIALS: This experiment was carried out at the Laboratory of Pathophysiology, Beijing Institute of Neurosurgery. Totally 67 adult Wistar rats were randomized into a control group (n=7) and 5 FPI groups (n=12) sampled 1, 3, 7, 14, and 30 days after FPI, respectively. Each FPI group was further divided into artificial cerebral spinal fluid (CSF) group (n=2), basic fibroblast growth factor (bFGF) group (n=5) and neurotrophin-3 (NT-3) group (n=5). METHODS: Lateral fluid percussion brain injury was induced in rats in the FPI group and the rats in the control group were only subjected to craniotomy without percussion. The rats in FPI groups were given intraperitoneal injection of bromodexyuridine (BrdU) at the dosage of 50 mg/kg for three times a day in 1-and 3-day FPI groups, but only once a day in 7-and 14-day groups, with the final dose given 2 hours before sacrifice. The rats in bFGF subgroup and NT-3 subgroup were given bFGF at the total daily dose of 360 ng and NT-3 of 240 ng, respectively, while those in artificial CSF subgroup received perfusion fluid of 4 μL without bFGF or NT-3 every day. The dynamic expressions of nestin and BrdU in the rat brain were determined with immunocytochemistry. BrdU labeling method was used to identify the differentiated neural progenitor cells, and nestin expression was used to identify the neural progenitor cells. MAIN OUTCOME MEASURES: Expressions of Brdu, glial fibrillary acidic protein (GFAP)^+/Brdu^+ and GFAP^-/Brdu^+ cells in the rat brain of each group at various time points. RESULTS: Totally 67 rats entered the result analysis. ① In comparison with the control group, nestin-positive cells in the cortex, hippocampus and subventricular zone on the injured side was obviously increased at lday after FPI (3.1±1.1 vs 0, 5.5±0.9 vs 1.3±0.8 and 8.1±0.9 vs 2.3±0.8 in each visual field, respectively, P 〈 0.05), reaching the peak on day 7 (7.5±1.2, 10.2±1.5, and 13.6±1.2 in each visual field, respectively) and disappeared till day 30 (0, 1.2±0.9, and 2.1±0.8 in each visual field, respectively). ② BrdU-positive cells in the cortex, hippocampus and subventricular zone on the injured side increased to the highest level 3 days after FPI (12.6±1.5, 9.9±1.1, and 13.4±1.0 in each visual field, respectively), but gradually decreased since day 7. ② Nestin-and BrdU-positive cells in the subventricular zone gradually migrated to the opposite side across the corpus callosum. CONCLUSION: FPI can stimulate the proliferation and migration of neural progenitor cells in adult rat brain, such as in the cortex, hippocampus and subventricular zone, where the nestin-positive cells is the most 7 days after the injury, but BrdU-positive cells is the most 3 days after the injury.
出处 《中国临床康复》 CSCD 北大核心 2005年第38期182-184,F0003,共4页 Chinese Journal of Clinical Rehabilitation
基金 中国博士后科学基金资助(2001-12325)~~
  • 相关文献

参考文献3

二级参考文献22

  • 1[4]Palmer TD, Markakis EA, Willhoite AR, et al. Fibroblast growth factor-2 activase latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999; 19(19): 8487-97
  • 2[5]Ourednik V, Ourednik J, Park KI. Neural stem cell-a versatile tool for cell replacement and gene therapy in the central nervous system. Clin Genet 1999; 56(4): 267 -78
  • 3[6]Lendahl U, Zimmerman LB, Mekay RD. CNS stem cells express a new class of intermediate filament protein. Cell 1990; 23:585 -95
  • 4[7]Qian XD, Goderie SK, Temple S. FGF2 concentration regulators the generation of neurons and glia from multipotent cortical stem cells. Neuron 1997: 18:81 -93
  • 5[1]Sugaya K. Neuroreplacement therapy and stem cell biology under disease conditions. Cell Mol Life Sci 2003; 60 (9): 1891-902
  • 6[2]Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2001; 2:287-93
  • 7[3]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255:1707-10
  • 8[4]Ronn LC, Berezin V, Bock E. The neural cell adhesion molecule in synaptic plasticity and ageing. Dev Neurosci 2000; 18 ( 1 ): 193-9
  • 9Galli R, Borello U, Gritti A, et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 2000 ; 3: 986 - 91
  • 10Kojima A, Tator CH. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropath Exp Neurol 2000; 59 ( 8 ): 687 - 97

共引文献1

同被引文献11

  • 1李东培,汪华侨,姚志彬.巢蛋白的表达模式及其功能[J].解剖学研究,2004,26(3):216-218. 被引量:13
  • 2童健尔,刘学政,阮奕文,姚志彬.穹窿海马伞损伤诱导神经前体细胞增殖和迁移[J].中国临床康复,2006,10(33):10-13. 被引量:1
  • 3Toda H, Tsuji M, Nakano I, et al. Stem cell-derived neural stem/progenitor cell supporting factor is an autocrine/paracrine survival factor for adult neural stem/progenitor cells. J Biol Chem 2003~278(37): 35491-35500.
  • 4Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fractured is location of spinal column. A preliminary report.JAMA 1991 ;57:878-880.
  • 5Bjorklund A,Lindvall O. Self-repair in the brain. Nature 2000;405(6789): 3892-3895.
  • 6Ferretti P, Zhang F, O'Neill P. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 2003; 226(2 ) :245-256.
  • 7Ernst C, Chnstie BR. The putative neural stem cell marker, nestin, is expressed in heterogeneous cell types in the adult rat neocortex. Neuroscience 2006; 138(1 ):183-188.
  • 8Okada S, Nakamura M, Katoh H, et al. Conditional ablation of Stat3 or Soc3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 2006;12(7):829-834.
  • 9Lu P, Jones LL, Snyder EY, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181(2):115-129.
  • 10Iwai M, Sato K, Kamada H, et al. Temporal profile of stem cell division, migration, and differentiation from subventncular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab 2003; 23(3):331-341.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部