期刊文献+

第二类Cartan-Hartogs域上的一类双全纯不变量

The Biholomorphic Invariant on Cartan-Hartogs Domains of the Second Type
下载PDF
导出
摘要 利用全纯自同构映射,求出了第二类Cartan-Hartogs域YII上Bergman度量矩阵行列式detT(W,Z;W,Z)的显表达式,从而得到YII上的双全纯不变量JYII.进一步研究了当点(W,Z)趋于边界YII时JYII的极限,有如下结论:当点(W,Z)→(W0,Z0)∈YII(|W0|≠0)时,JYII存在极限πm+N(m+1+N)m+N(m+N)!;当点(W,Z)→(0,Z0)∈YII时,JYII没有极限. By means of holomorphic automorphic map to compute the determinant of Bergman metic matrix detT for domains YH, which are Cartan-Hartogs domains of the second type,in explicit formulas and the biholomorphic invariant JYH for the domains YH are obtained. And then the limit of JYH when points (W.Z)→(W0,Z0)∈δYH are considered. One can get the following result: if (W.Z)→(W0,Z0)∈δYH(|W0|≠0), then JYH has the limit [π^m+n(m+1+N)^m+N)/(m+N)!] ; if (W.Z)→(0,Z0)∈δYH, then the limit of JYH is not existed.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期749-752,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10171068) 北京市自然科学基金(1012004)资助
关键词 Caftan—Hartogs域 BERGMAN核函数 BERGMAN度量 双全纯不变量 Cartan-Hartogs domain Bergman kernel function Bergman matric biholomorphic invariant
  • 相关文献

参考文献2

  • 1Bergman S. The Kernel Function and Conformal Mapping [M]. USA: Amer. Math Soc. (Second Ed. ), Math Sureys 5,1970.
  • 2陆启铿.多复变函数引论[M].北京:科学出版社,1961..

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部