期刊文献+

基于Voigt模型和Reuss模型的三方晶粒各向异性集合的弹性本构关系 被引量:6

ELASTIC CONSTITUTIVE EQUATIONS OF ANISOTROPIC AGGREGATE OF TRIAANGLECRYSTALLITES UNDER VOIGT'S MODEL AND REUSS'MODEL
下载PDF
导出
摘要 多晶体材料的宏观力学性质与晶粒的化学成分和多晶体的微结构(晶粒的尺寸、取向分布、边界结构)有关,研究多晶体微结构与材料宏观力学性质的关系具有重要的理论意义和工程应用背景。利用三方晶粒的D3对称性给出了三方晶粒的弹性本构关系,通过引入ODF描述多晶体材料的取向分布,基于Voigt模型和Reuss模型分别找出带有织构系数影响的三方晶粒任意集合的多晶体材料弹性本构关系上、下限。 A polycrystalline material is an aggregate of tiny crystallites separated by grain boundaries. The chemical composition and the arrangement of the constituting crystallites, which includes grain orientations and grain boundary structure, determine the mechanics properties of the polycrystal. It is very important to study microstructures of polycrystals because of its engineering application. In this paper, we use the D3 symmetry of triangle crystallites to obtain elastic constitutive relation of crystallites with D3 symmetry. By introducing the orientation distribution function (ODF) to describe the probability density of finding a crystallite with orientation R, we derive an elastic stiffness tensor and an elastic softness tensor of an anisotropic aggregate of D3 crystallites under Voigt's model and Reuss" model, respectively. The elastic stiffness tensor and the elastic softness tensor's inverse are the upper bound and the lower bound of the effective elastic stiffness tensor, respectively.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第5期482-488,共7页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(0450035 0512021)
关键词 三方晶粒 多晶体 弹性本构 织构系数 D3 crystallites polycrystal elastic constitutive equation texture coefficient
  • 相关文献

参考文献14

  • 1Adams B L.Description of the Intercrystalline Structure Distribution in Polycrystalline Materials [J] Metallurgical Transactions A 1986(17):2 199~2 207.
  • 2Morris P R.Averaging Fourth-Rank Tensors With Weight Functions [J].J Appl Phys,1969(40):447~448.
  • 3Sayers C M.Ultrasonic Velocities in Anisotropic Polycrystalline Aggregates [J].J Phys D,1982(15):2 157~2 167.
  • 4Man C.-S.On the Constitutive Equations of Some Weakly-Textured Materials [J].Arch Rational Mech,1998(14):77~103.
  • 5Huang M,Man C -S,Constitutive Relation of Elastic Polycrystal with Quadratic Texture Dependence[J],J Elasticity,2003(72):183~212.
  • 6Huang M.Perturbation Approach to Elastic Constitutive Relations of Polycrystals [J].Journal of the Mechanics and Physics of Solids,2004(52):1 827~1 853.
  • 7Man C.-S.Material Tensors of Weakly-Textured Polycrystals[C].In:W.Cliental.Proceedings of the 3rd International Conference on Nonlinear Mechanics.Shanghai:Shanghai University Press,1998.87~94.
  • 8Voigt W.Uber die Beziehung Zwischen Den Beiden Elastiziatskonstanten Isotroper Korper[J]. Wied Ann,1889(38):573~587.
  • 9Reuss A.Berchung der Fiessgrenze von Mischkristallen auf Grund der Plastiziatsbedingung fur Einkristalle[J].Z Angew Math Mech,1929(9):49~58.
  • 10Roe R J.Description of Crystallite Orientation in Polycrystalline Materials: III,General Solution to Pole Figures [J].J Appl Phys,1965(36):2 024~2 031.

同被引文献46

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部