期刊文献+

THE HEAT KERNEL ON THE CAYLEY HEISENBERG GROUP 被引量:2

THE HEAT KERNEL ON THE CAYLEY HEISENBERG GROUP
下载PDF
导出
摘要 The authors obtain an explicit expression of the heat kernel for the Cayley Heisenberg group of order n by using the stochastic integral method of Gaveau. Apart from the standard Heisenberg group and the quaternionic Heisenberg group, this is the only nilpotent Lie group on which an explicit formula for the heat kernel has been obtained. The authors obtain an explicit expression of the heat kernel for the Cayley Heisenberg group of order n by using the stochastic integral method of Gaveau. Apart from the standard Heisenberg group and the quaternionic Heisenberg group, this is the only nilpotent Lie group on which an explicit formula for the heat kernel has been obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期687-702,共16页 数学物理学报(B辑英文版)
基金 SupportedbytheNationalNatureScienceFoundationofChina(10261002)
关键词 Cayley Heisenberg group heat kernel sub-Laplace operator Cayley Heisenberg group, heat kernel, sub-Laplace operator
  • 相关文献

参考文献2

二级参考文献10

  • 1Helgason, S.: Differential geometry, Lie groups and Symmetric space, s, Academic Press, New York, 1978.
  • 2Barker, S. R, Salamon, S. M.: Analysis on et generalized Heisenberg group. J. London Math. Sot, 28(2),184-192 (1983).
  • 3Allcock, D.: An isoperimetric inequality for the Heisenberg groups. Geom. and Funct. Anal, 8(2), 219-233(1998).
  • 4Zhu, F. L.: Tile heat kernel and tile Riesz transforms on the quaternionic Heisenberg groups. Pacific Jour. of Math, 209(1), 175-199 (2003).
  • 5Hueber, H, Muller, D.: Asymptotics for some Green kernels oil the Heisenberg group and the Martin boundary. Math. Ann, 283, 97-119(1987).
  • 6Hulanicki, A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on tile Heiscnberg group. Studia Math, Tom, LVI, 165-173(1976).
  • 7Gavcau, B,: Principe de moindre action, propagation de la chaleur et, cstimccs sous elliptiques surcertainsgroupes nilpotents, Acta Math,, 139, 95-,153 (1977).
  • 8Erdelyi, A.: Asymptotic expansions, Dover Publications, Inc, 1956.
  • 9Magnus, W, Oberhettings, F, Soni, R, P.: Formulas and theorems for the special functions of mathematical physics, Grundlehren 52, Springer-Verlag, 1966.
  • 10Brelot, M.: On topological boundaries in potential theory, Lect, Notes in Math, 175, Springer, Berlin,Heidelberg, New-York, 1971.

共引文献4

同被引文献14

  • 1Jing Wen LUAN Fu Liu ZHU.Asymptotics for Certain Harmonic Functions and the Martin Compactification on the Quaternionic Heisenberg Group[J].Acta Mathematica Sinica,English Series,2005,21(6):1295-1308. 被引量:4
  • 2S. Thangavelu.Revisiting Hardy’s theorem for the Heisenberg group[J].Mathematische Zeitschrift.2002(4)
  • 3Lars H?rmander.Hypoelliptic second order differential equations[J].Acta Mathematica.1967(1)
  • 4Kaplan A.Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980
  • 5Cygan J.Heat kernels for class 2 nilpotent groups[].Studia Mathematica.1979
  • 6.
  • 7Hardy G H.A theorem concerning Fourier transforms[].Journal of the London Mathematical Society.1933
  • 8Thangavelu S.Revisiting Hardy‘s theorem for the Heisenberg group[].Mathematische Zeitschrift.2002
  • 9Thangavelu S.An introduction to the uncertainty principle:Hardy‘s theorem on Lie groups[].Progress in Mathematics.2003
  • 10Bonfiglioli A,Uguzzoni F.Nonlinear Liouville theorems for some critical problems on H-type groups[].Journal of Functional Analysis.2004

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部