摘要
在本文中我们首先对具有随机定义域的连续随机算子组证明了Darbao型不动点定理.应用此定理我们给出了非线性随机Volterra积分方程组和非线性随机微分方程组的Cauchy问题解的存在性准则.这些随机方程组的极值随机解的存在性和随机比较结果也被获得.我们的定理改进和推广Tyaughn,Lakshmikantham,Lakshmikantham-Leela,DeBlast-Myjak和第一作者的相应结果.
In this paper, we first prove a Darbao type fixed point theorem for a system of continuous random operators with random domains. Then, by using the theorem, we give the existence criteria of solutions for a systems of nonlinear random Volterra integral equations and for the Cauchy problem of a system of nonlinear random differential equations. The existence of extremal random solutions and random comparison results for these systems of random equations are also obtained. Our theorems improve and generalize the correponding results of Vaughn.Lakshmikantham, Lakshmikantham-Leela, De Blasi-Myjak and Ding.
出处
《应用数学和力学》
EI
CSCD
北大核心
1996年第6期471-481,共11页
Applied Mathematics and Mechanics
基金
国家自然科学基金
关键词
非线性
随机积分方程
随机微分方程
解
存在性
nonlinear integral equations
random Volterra integral equations
random Cauchy problem
extremal random solution
comparison result