摘要
Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively) determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique. To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.
Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively) determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique. To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.
基金
ThisprojectwassponsoredbytheKeyScienceandTechnologyProgramoftheMinistryofLandResourcesofPRC(D2002-008).