期刊文献+

VaR估计中的模型风险——检验方法与实证研究 被引量:6

Model Risk in VaR Estimation: Test Methods and Empirical Study
下载PDF
导出
摘要 本文以上证A股指数为例对GARCH类模型在估计Value-at-Risk(VaR)值时所存在的模型风险进行了分析。我们分别考虑了基于EWMA,GARCH,EGARCH和FIGARCH模型的VaR估计方法。模型风险的存在意味着使用不同的估计方法得出的VaR值可能迥然不同。为了对这四种估计方法进行评判,我们在似然率和Kullback-Leibler信息准则的基础上运用四种统计检验方法对不同置信度水平下的VaR估计值进行了返回检验。实证结果表明EGARCH和FIGARCH方法的表现明显比其它两种优越。 This paper studies the model risk of GARCH-type models of volatility in modeling the daily Value-at-Risk (VaR) of Shanghai Stock Exchange index. Four estimates based on EWMA, GARCH, EGARCH and FIGARCH models to VaR are examined in this paper. As alternative VaR implementations may yield very different VaR estimates, we evaluate the performances of these four volatility models in different confidence levels by four statistical tests based on likelihood ratio or Kullback-Leibler information criterion. Our results show that the obtained VaR estimates by EGARCH method and FIGARCH method are much better than the ones provided by the other two methods.
作者 姚京 李仲飞
出处 《管理评论》 2005年第10期3-7,54,共6页 Management Review
基金 高等学校全国优秀博士学位论文作者专项资金(200267) 新世纪优秀人才支持计划(NCET-04-0798) 国家自然科学基金项目(70471018)
  • 相关文献

参考文献12

  • 1Morgan ,J.P. Riskmetrics-Technical Document, 4th edition. New York: Morgan Guaranty Trust Company, 1996
  • 2Duffle, D., J.Pan. An overview of value at risk. Journal of Derivatives, 1997(4): 7-49
  • 3Kupiec, P.H. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 1995,3(2): 73-84
  • 4Christoffersen, P. Evaluating interval forecasts. International Economic Review, 1998,39:841-862
  • 5Lopez ,J. Regulatory evaluation of value-at-risk models. Journal of Risk, 1999,23:470-472
  • 6Berkowitz,J. Testing accuracy of density forecasts in risk management Journal ofBusiness and Economic Statistics, 2001
  • 7Christoffersen ,P., J.Hahn, A.Inoue. Testing and comparing value-at-risk measures. Journal of Empirical Finance, 2001,8:325-342
  • 8Kitamura, Y., M. Stutzer. An information-theoretic alternative to generalized method of moments estimation Econometrica, 1997,65: 861-874
  • 9Kitamura, Y. Comparing misspecified dynamic econometric models using nonparametric likelihood, Manuscript. Madison: Department of Economics, University of Wisconsin, 1997.
  • 10Bollerslee, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986, 31:307-327.

同被引文献95

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部