期刊文献+

基于试验设计的ATR算法的性能评价 被引量:1

An Experimental Design Based Method for the Performance Evaluation of an ATR Algorithm
下载PDF
导出
摘要 在试验设计方法学的基础上,提出了一种定量评价自动目标识别算法性能的方法;给出了几种刻划场景变化的图像质量指标的定义和度量方法;提出了用响应曲面模型方法建立算法性能模型和描述图像度量与算法性能之间统计关系的方法.实验结果表明,仅需要少量的测试图像就可得到可靠的算法性能模型和可信的评价结果. n the basis of experimental design methodology, a method for quantitative evaluation ofthe algorithm for automatic target recognition is presented. The definitions and metric methods of several quality indices for the description of the iamges due to scenery variation are given. The responsesurface modelling approach is employed to analyse the performance of the segmentation method oncommon data. Test. results show that only a few frames of tested images are needed to obtain good andreliable performance models and credible results of evaluation.
出处 《华中理工大学学报》 CSCD 北大核心 1996年第2期43-45,共3页 Journal of Huazhong University of Science and Technology
基金 国防科技预研基金 航空航天基础性研究基金
关键词 自动目标识别 算法性能 试验设计 遥感图像 automatic target recognition performence evaluation of algorithm experimental designmethodology image metric response surface modelling
  • 相关文献

参考文献2

二级参考文献5

共引文献4

同被引文献14

  • 1常洪花,张建奇.基于人眼视觉系统的红外背景杂波量化技术[J].红外技术,2004,26(5):13-17. 被引量:6
  • 2李敏,周振华,张桂林.自动目标识别算法性能评估中的图像度量[J].红外与激光工程,2007,36(3):412-416. 被引量:10
  • 3Li Min and Zhang Gui-lin. Image measures for segmentation algorithm evaluation of automatic target recognition system[C]. 1st International Symposium on Systems and Control in Aerospace and Astronautics,Harbin, China, 2006: 674-679.
  • 4Edmondson R, Rodgers M, and Banish M, et al.. Single-frame image processing techniques for low-SNR infrared imagery[C]. Proceeding of SPIE, 2008, 6940: 74-78.
  • 5Yang L, Zhou Y, Yang J, and Chen L. Variance WIE based infrared images processing[J]. Electronics Letters, 2006, 42(15): 857-859.
  • 6Clark L G and Vincent V J. Image characterization for automatic target recognition algorithm evaluations[J]. Optical Engineering, 1991, 30(2): 147-153.
  • 7Trievdi M M and Schirvaikar M V. Quantitative characterization of image clutter: problems, progress, and promises[C], proceedings of SPIE, 1993, 1967: 288-299.
  • 8Mao Xia and Diao Wei-he. Criterion to evaluate the quality of infrared small target images[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(1): 56-64.
  • 9Chang Hong-hua and Zhang Jian-qi. Evaluation of human detection performance using target structure similarity clutter metrics[J]. Optical Engineering, 2006, 45(9): 41-47.
  • 10Aviram G and Rotman S R. Analyzing the effect of imagery wavelength on the agreement between various image metrics and human detection performance of targets embedded in natural images[J]. Optical Engineering, 2008, 40(9): 1877-1884.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部