期刊文献+

具脉冲效应的时滞周期捕食与被捕食系统正周期解的存在性(英文) 被引量:3

EXISTENCE OF POSITIVE PERIODIC SOLUTION FOR A DELAY PERIODIC PREDATOR-PREY SYSTEM WITH IMPULSIVE EFFECT
下载PDF
导出
摘要 本文研究一类具脉冲效应的时滞周期捕食与被捕食系统,利用重合度理论中的方法,获得该系统至少存在一个正周期解的充分条件. In this paper, we investigate a classical delay periodic predator-prey system with impulsive effect. by using the method of coincidence degree theory. Sufficient conditions are obtained for the existence of at least one strictly positive periodic solution of this system.
出处 《数学杂志》 CSCD 北大核心 2005年第6期591-598,共8页 Journal of Mathematics
基金 SupportedbyNationalNaturalScienceFoundationofChina(10171106)
关键词 正周期解 脉冲效应 重合度 periodic solution impulsive effect coincidence degree
  • 相关文献

参考文献10

  • 1Ruan Shigui. Absolute stability conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays[J]. Quar. Appl. Math., 2001, 59(1):159-173.
  • 2Yasuhisa Saito, Tadayuki Harau, Ma Wanbiao. Necessary and sufficient conditions for permanence of global stability and a Lotka-Volterra system with two delays[J]. J. Math. Anal. Appl. , 1999,236(2):534-556.
  • 3Kuang Y.. Differential equation with Application in population dynamic[M]. Boston: Academic press, 1993,50-180.
  • 4Lu Zhengyi, Wang Wendi. Global stability for two-species Lotka-Volterra systems with delay[J]. J.Math. Anal. Appl. 1997,208(1):277-280.
  • 5Song Xinyu, Chen Lansun. Harmless delays and global attractivity for nonautonomous predator-prey system with dispersion[J]. Comp. Math. Appl. , 2000, 39(1):33-42.
  • 6Zhang Xinan, Chen Lansun. The stage-structured predator-prey model and optimal harvesting policy [J]. Math. Bios., 2000,168(2):201-210.
  • 7Zhen Jin, Ma Zhien, Han Maoan. The existence of periodic solution of n-species Lotka-Volterra competition system with impulsive[J]. Chaos Solitons & fractals,2004,22(1):181-188.
  • 8Dong Yujun, Zhou Erxin. An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations[J]. J. Math. Anal. Appl. 1996,197(3) :875-889.
  • 9Bainov D. D. , Simeonov P.S.. System with impulsive effect: stability, theory and application[M].New York:John wiley and sons, 1989.
  • 10Gaines R. E. , Mawhin J. L.. Coincidence Degree and Nonlinear Differential equations[M]. Berlin:Springer-Verlay, 1977.

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部