期刊文献+

YG算法设计分数傅里叶变换衍射光学光束整形器件 被引量:4

Diffractive Optical Element Designed by YG Algorithm for Beam Shaping in Fractional Fourier Transform Domain
下载PDF
导出
摘要 针对分数傅里叶变换衍射光学光束整形器件,比较了按离散点与按菲涅耳积分计算得到的变换矩阵间的差距,从中分析得出按离散点计算的变换矩阵引入的离散化误差与分数傅里叶变换系统参数的关系.模拟计算结果表明,该离散化误差不能忽略.为了在输出面上得到真实的光强分布,应采用菲涅耳积分计算其变换矩阵.鉴于该变换矩阵非幺正,本文利用YG算法进行了光束整形器件的设计. For the diffractive optical element (DOE) realizing beam shaping in the fractional Fourier transform domain,the transform matrix calculated by the discrete sampling points was compared with that calculated by the Fresnel integral, and the discretization error of the intensity distribution on the output plane was qualitatively obtained. Simulated results show this discretization error cannot be neglected. Therefore the Fresnel integral should be used to obtain the true intensity distribution on the output plane. Because the transform matrix calculated with the Fresnel integral was non-unitary, YG algorithm was used to design the DOE realizing beam shaping in the fractional Fourier transform domain in this paper.
出处 《光子学报》 EI CAS CSCD 北大核心 2005年第11期1724-1727,共4页 Acta Photonica Sinica
基金 国家自然科学基金委员会中国工程物理研究院联合基金(10276021)资助
关键词 分数傅里叶变换 YG算法 衍射光学器件 光束整形 Fractional Fourier transform YG algorithm Diffractive optical element Beam shaping
  • 相关文献

参考文献13

  • 1Mendlovic D,Ozaktas H M.Fractional fourier transforms and their optical implementation:I.J Opt Soc Am A,1993,10(9):1875~1881
  • 2Ozaktas H M,Mendlovic D.Fractional fourier transforms and their optical implementation:II.J Opt Soc Am A,1993,10(12):2522~2531
  • 3Pellat-Finet P.Fresnel diffraction and the fractional-order Fourier transform.Opt Lett,1994, 19(18):1388~1390
  • 4Zalevsky Z,Mendlovic D,Dorsch R G.Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain.Opt Lett,1996,21(12):842~844
  • 5Feng D,Yan Y B,Lu S,et al.Designing diffractive phase plates for beam smoothing in the fractional Fourier domain.Journal of Modern Optics,2002,49(7):1125~1133
  • 6Cong W X,Chen N X,Gu B Y.Beam shaping and its solution with the use of an optimization method.Appl Opt,1998,37(20):4500~4503
  • 7Zhang Y,Dong B Z,Gu B Y,et al.Beam shaping in the fractional Fourier transform domain. J Opt Soc Am A,1998,15(5):1114~1120
  • 8冯迪,严瑛白,金国藩,谭峭峰.求解分数傅里叶变换衍射积分的一种快速算法[J].光子学报,2003,32(7):885-888. 被引量:12
  • 9霍裕平 杨国桢 顾本源.用光学方法实现幺正变换及一般线性变换(Ⅱ)—用迭代法求解[J].物理学报,1976,25(1):31-46.
  • 10Yang G Z,Wang L,Dong B Z,et al.On the amplitude-phase retrieval problem in an optical system involving non-unitary transformation.Optik,1987,75(2):68~74

二级参考文献22

  • 1E O 布赖姆著 柳群译.快速傅里叶变换[M].上海:上海科学技术出版社,1979.165-179.
  • 2Lohmann A. Image rotation Wigner rotation and the fractional Fourier transform. J Opt Soc Am ( A ), 1993,10(10) :2181 -2186.
  • 3Mendlovic D, Ozaktas H M. Fractional Fourier transform and their optical implementation: I. J Opt Soc Am (A), 1993,10(9) :1875 - 1880.
  • 4Ozaktas H M, Mendlovic D. Fractional Fourier transform and their optical implementation: II. J Opt Soc Am ( A ) , 1993,10(12) :2522 - 2531.
  • 5Mas D, Gareia J. Fast algorithm for free-space diffraction patterns calculation. Opt Commun, 1999 ,164 :233 - 245.
  • 6Marinho F J, Bernardo L M. Numerical calculation of fractional Fourier transform with a single fast Fourier transforms algorithm, J Opt Soc Am (A), 1998, 15(8) :2111 -2116.
  • 7吕乃光.傅里叶光学[M].北京:机械工业出版社,1998..
  • 8HuoYuping YangGuozhen GuBenyuan.Unitary transformation and general linear transformation by an optical method (Ⅱ)—The iterative method of solution[J].物理学报,1976,25(1):31-46.
  • 9Ben-yuan Gu, Guo-zhen Yang, Bi-zhen Dong et al..Diffractive-phase-element design that implements several optical functions [J]. Appt. Opt., 1995, 34(14):2564-2570
  • 10M. P. Chang, O. K. Ersoy, B. Dong et al.. Iterative optimization of diffractive phase elements simultaneously implementing several optical functions [J]. Appl. Opt,,1995, 34(17) :3069-3076

共引文献25

同被引文献34

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部