期刊文献+

高速公路模糊神经网络限速控制与仿真研究 被引量:8

Neuro-Fuzzy Control for Speed Limit on Expressway and Its Simulation Study
下载PDF
导出
摘要 高速公路限速控制是一个非线性时变系统,难于用数学模型准确建模,提出一种模糊神经网络实现限速控制。本文阐述了网络的结构和学习算法,根据高速公路车辆群状态、路面性能、气象条件等,建立交通流速度限制模糊神经网络模型,并进行了仿真研究。仿真结果表明网络训练速度快、精度高,适合交通流限速控制的在线建模。该方法切实可行,可使交通流更加均匀、稳定,从而提高主线运行的安全和效率。 The control for speed limit on expressway is a nonlinear and time variable system, it is difficult to simulate with a mathematical model.A neuro-fuzzy network is proposed to solve the problem. The network structure and learning algorithms are formulated. The network model is built based on such information as the number of vehicles on expressway, the performance of the road surface, and the weather conditions.Simulation study is carried out by taking full advantage of a computer.Simulation results show that such a network has fast learning ability and high accuracy.It is suitable to realize on-line modeling for speed limit of expressway traffic. The approach is practical and effective. It can make the traffic flow more uniform and steady, so that the safety and efficiency on expressway are improved.
出处 《公路交通科技》 CAS CSCD 北大核心 2005年第11期123-125,129,共4页 Journal of Highway and Transportation Research and Development
基金 广东省自然科学基金资助项目(010486)
关键词 模糊神经网络 高速公路 速度限制 仿真 Neuro-fuzzy network Expressway Speed limit Simulation
  • 相关文献

参考文献5

  • 1Smulders S. Control of Freeway Traffic Flow by Variable Speed Signs [J] .Transportation Research, 1990, 24B (2): 111-132.
  • 2Krause B.Intelligent Highway by Fuzzy Logic: Congestion Detection and Traffic Control on Multi-Lane Roads with Variable Road Signs [C] .Proceedings of the 5th IEEE International Conference on Fuzzy Systems,1996: 1832- 1837.
  • 3丛爽.径向基函数网络的功能分析与应用的研究[J].计算机工程与应用,2002,38(3):85-87. 被引量:57
  • 4Chen L L.Freeway Ramp Control Using Fuzzy Set Theory for Inexact Reasoning[J] .Transportation Research, 1990, 24 (1): 15-25.
  • 5罗赞文,吴志坚,韩曾晋.RBF网络在交通流模型辨识中的应用[J].清华大学学报(自然科学版),2001,41(9):106-110. 被引量:21

二级参考文献4

  • 1荆便顺.一段道路交通脉冲响应的识别及其应用[J].信息与控制,1995,24(3):177-182. 被引量:10
  • 2[1]H Demuth,M Beale. Neural Network Toolbox User's Guide[M].The Math Works Inc, 1997.7
  • 3[2]P D Wasserman.advanced Methods in Neural Computing[M].New York:Van Norstrand Reinhold,1993
  • 4[3]J-S Roger Jang,C-T Sun.Functional Equivalence between radial basis fuction networks and fuzzy inference system[J].IEEE Trans.on Neural Networks, 1993 ;4( 1 ): 156-159

共引文献76

同被引文献62

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部