摘要
The nanometer yttrium oxides were obtained through precipitation in aqueous solution by reaction with ammonium bicarbonate. The reaction between yttrium chloride and ammonium bicarbonate, the effect of surfactants on particle size and the methods of controlling agglomeration were studied. Compared to other methods, the method of controlling the agglomeration by adding surfactant is one of the best methods for controlling the agglomeration of nanometer particles in wet-chemical process. Increasing surfactants in process of precipitation deduced particle size, obtained narrow size distribution of primary particles. As for the concentration range studied, excess surfactants increased the particle size on the contrary. Characteristics of the thermal decomposition of yttrium carbonate were studied. It indicated that the approximate chemical composition of the precipitate was Y(OH)Clx(CO3) (1-x/2) ·3H2O,the cubic Y2O3 was obtained above 600℃, the specific surface and the remain chloride of nanometer Y2O3 was decreased with calcinating temperature rising. The spherical nanometer yttrium oxide was gained with primary particles<50 nm,agglomerate distribution D 50 <150 nm, BET>35 m2/g,agglomerate constant (D 50 /D BET )<6.
The nanometer yttrium oxides were obtained through precipitation in aqueous solution by reaction with ammonium bicarbonate. The reaction between yttrium chloride and ammonium bicarbonate, the effect of surfactants on particle size and the methods of controlling agglomeration were studied. Compared to other methods, the method of controlling the agglomeration by adding surfactant is one of the best methods for controlling the agglomeration of nanometer particles in wetchemical process. Increasing surfactants in process of precipitation deduced particle size, obtained narrow size distribution of primary particles. As for the concentration range studied, excess surfacrants increased the particle size on the contrary. Characteristics of the thermal decomposition of yttrium carbonate were studied. It indicated that the approximate chemical composition of the precipitate was Y(OH)Cl(CO)(1,2)·3H2O,the cubic Y2O3 was obtained above 600℃, the specific surface and the remain chloride of nanometer Y2O3 was decreased with calcinating temperature rising. The spherical nanometer yttrium oxide was gained with primary particles〈50 nm,agglomerate distribution D50 〈 150 nm, BET〉 35 m^2/g, agglomerate constant ( D50/DBET ) 〈6.
出处
《广东有色金属学报》
2005年第2期265-271,共7页
Journal of Guangdong Non-Ferrous Metals
基金
Project supported by key project of science and technology research of guangdong province(2002A1070108)