摘要
本文对非定常的Stokes方程的初边值问题证明了Phragmen-Lindelof二择性原理,即证明Stokes流函数的能量,随着与带状区域有限端距离的增加必定或者按指数率增长或者按指数率衰减.对能量衰减情况建立了Stokes流速度的最大模的点点估计.并提出求全能量上界的方法.
In this paper we prove Phragmen-Lindelof type alternative for the initial boundary problem of Stokes equation, i.e. we show that the energy expression for the solution of the initial boundary problem must either grow exponentially ordecay exponentially with axial distance from the end of a semi-infinite strip. For the case of decay, we also establish the pointwise estimate for the maximummodule of the Stokes flow and present a method for obtaining explicit bounds for the total energy.
出处
《应用数学和力学》
CSCD
北大核心
1996年第8期689-698,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金
中山大学基金
关键词
初边值问题
STOKES方程
P-L二择性原理
非定常流
Stokes equation, initial boundary problem, Phragmen-Lindelof alternative theorem, estimate of energy dissipation