期刊文献+

基于改进T-S模型的热工系统在线辨识算法 被引量:1

On-line identification algorithm for thermal process based on an improved T-S model
下载PDF
导出
摘要 提出用一种改进的T-S模型实现非线性系统在线辨识的算法。通过样本与聚类中心矢量之间的贴近度来修正聚类中心,并根据样本到中心矢量的距离对输入数据空间进行划分。在此基础上利用递推最小二乘算法辨识出模型的结论参数。给出了具体的算法步骤,将该方法与其他模糊辨识方法进行比较。结果表明,该方法具有简单、实用、辨识精度高等优点。 A new way of on-line identification based on an improved T-S model is presented. The clustering centre vectors are updated by the close degree, which indicates the relation between input vectors and clustering centre. The input data space is partitioned into some local regions by the distance between input data and clustering centre. The conclusion parameters are identified by the recursive least-square identification algorithm. The concrete steps of the algorithm ale given. It is applied to identify the T-S model of the Box-Jenkins model and a coordinated control system of 300 MW unit. The computational results show that this on-line identifier is effective.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2005年第6期14-17,共4页 Journal of North China Electric Power University:Natural Science Edition
关键词 在线辨识 T-S模型 热工过程 模糊辨识 on-line identification T-S fuzzy model thermal.process fuzzy identification
  • 相关文献

参考文献3

二级参考文献14

  • 1Wang Liang,IEEE Trans Syst Man Cybern,1996年,26卷,1期,100页
  • 2Chung Fulai,Neural Networks,1994年,3卷,7期,539页
  • 3Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans Syst.,Man, Cybern., 1985,15(1): 116-130.
  • 4Nie J H, Lee T.H..Rule-based modeling: fast construction and optimal manipulation [J]. Part A, IEEE Trans. Syst.,Man, Cybem., 1996,26(6):728-738.
  • 5Xu L, Krzyzay A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection [J], IEEE Trans.Neural Networks, 1993, 4(4): 636-649.
  • 6Shimoji S.,Lee S. Data clustering with entropical scheduling [C].Proceeding of IEEE Conference on Fuzzy Sytems, 1994,2423-2428.
  • 7Box G E P, Jenkins GM..Time series analysis, forcasting and control [M],San Francisco, Holden Day, 1970.
  • 8Tong R.M. Synthesis of fuzzy models for industrial processes [J]. Int.Gen. Syst., 1978,4(1): 143-162.
  • 9Pedrycz W. An identification of fuzzy relational systems [J]. Fuzzy Sets Syst., 1984, 13(2): 153-167.
  • 10Xu C W, Zailu Y. Fuzzy model identification and self-learning for dynamic systems [J]. IEEE Trans. Syst. Man Cybern., 1987, 17(4): 683-689.

共引文献68

同被引文献7

  • 1李培强,李欣然,陈辉华,唐外文.基于减法聚类的模糊神经网络负荷建模[J].电工技术学报,2006,21(9):2-6. 被引量:23
  • 2Johansen T A. Operating regime based process modeling and identification [ D ]. Trondheim: University of Trondheim, 1994.
  • 3Jose R, Gerard G, Patrice C, et al. Modelling of a water treatment plant: a multi-model representation [ J ]. Environmetrics, 2001,12 (7) : 599 - 611.
  • 4Yao J, Dash M, Tan S T, et al. Entropy-based fuzzy clustering and modeling[J]. Fuzzy Sets and Systems, 2000, 113(3):381 388.
  • 5Narendra K S, Gallman P G. An iterative method for the identification of nonlinear systems using a Hammerstein model [J ]. IEEE Transactions on Automatic Control, 1966, 11 (3) :546 - 550.
  • 6Aldo B, Alberto L, Mohamed O Z, et al. Automatie nonlinear auto-tuning method for Hammerstein modeling of electrical drives [ J ]. IEEE Transactions on Industrial Electronics, 2001,48 (3) : 645 - 655.
  • 7Wlodzimierz G. Stochastic approximation in nonparametric identification of Hammerstein systems[J]. IEEE Transaction on Automatic Control, 2002,47(11):1800 1811.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部